These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34246030)
1. Factors that influence the expansion of electric delivery vehicles and trucks in EU countries. Osieczko K; Zimon D; Płaczek E; Prokopiuk I J Environ Manage; 2021 Oct; 296():113177. PubMed ID: 34246030 [TBL] [Abstract][Full Text] [Related]
2. The Impact of the Available Infrastructure on the Electric Vehicle Market in Poland and in EU Countries. Tucki K; Orynycz O; Dudziak A Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554662 [TBL] [Abstract][Full Text] [Related]
3. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks. Breuer JL; Samsun RC; Stolten D; Peters R Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760 [TBL] [Abstract][Full Text] [Related]
4. Will changes in charging and gasoline prices affect electric vehicle sales? Evidence from China. Jiang Z; Gao X Environ Sci Pollut Res Int; 2024 Jan; 31(2):3123-3133. PubMed ID: 38079044 [TBL] [Abstract][Full Text] [Related]
5. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles. Tong F; Jaramillo P; Azevedo IM Environ Sci Technol; 2015 Jun; 49(12):7123-33. PubMed ID: 25938939 [TBL] [Abstract][Full Text] [Related]
6. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets. Tang C; Tukker A; Sprecher B; Mogollón JM Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507 [TBL] [Abstract][Full Text] [Related]
7. Agrivoltaic systems have the potential to meet energy demands of electric vehicles in rural Oregon, US. Steadman CL; Higgins CW Sci Rep; 2022 Mar; 12(1):4647. PubMed ID: 35301406 [TBL] [Abstract][Full Text] [Related]
8. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States. Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323 [TBL] [Abstract][Full Text] [Related]
9. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles. Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846 [TBL] [Abstract][Full Text] [Related]
10. Development and preliminary evaluation of a particulate matter emission factor model for European motor vehicles. Singh RB; Colls JJ J Air Waste Manag Assoc; 2000 Oct; 50(10):1805-17. PubMed ID: 11288309 [TBL] [Abstract][Full Text] [Related]
11. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors]. Shi XQ; Li XN; Yang JX Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966 [TBL] [Abstract][Full Text] [Related]
12. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target. Zhu Y; Skerlos S; Xu M; Cooper DR Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694 [TBL] [Abstract][Full Text] [Related]
13. Carbon emission of energy consumption of the electric vehicle development scenario. Wang M; Wang Y; Chen L; Yang Y; Li X Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710 [TBL] [Abstract][Full Text] [Related]
14. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267 [TBL] [Abstract][Full Text] [Related]
15. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading. Liao W; Liu L; Fu J Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31461949 [TBL] [Abstract][Full Text] [Related]
16. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies. Frey HC; Zhai H; Rouphail NM Environ Sci Technol; 2009 Nov; 43(21):8449-55. PubMed ID: 19924983 [TBL] [Abstract][Full Text] [Related]
17. Evaluating speed differences between passenger vehicles and heavy trucks for transportation-related emissions modeling. Hallmark SL; Isebrands H J Air Waste Manag Assoc; 2005 Oct; 55(10):1441-50. PubMed ID: 16295268 [TBL] [Abstract][Full Text] [Related]
18. Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks. Dallmann TR; Kirchstetter TW; DeMartini SJ; Harley RA Environ Sci Technol; 2013 Dec; 47(23):13873-81. PubMed ID: 24215572 [TBL] [Abstract][Full Text] [Related]
19. Legal regulations of restrictions of air pollution made by non-road mobile machinery-the case study for Europe: a review. Waluś KJ; Warguła Ł; Krawiec P; Adamiec JM Environ Sci Pollut Res Int; 2018 Feb; 25(4):3243-3259. PubMed ID: 29238926 [TBL] [Abstract][Full Text] [Related]
20. Indirect Carbon Emissions and Energy Consumption Model for Electric Vehicles: Indian Scenario. Kurien C; Srivastava AK; Molere E Integr Environ Assess Manag; 2020 Nov; 16(6):998-1007. PubMed ID: 32543043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]