These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34246107)

  • 1. MicroRNAs: Tiny, powerful players of metal stress responses in plants.
    Srivastava S; Suprasanna P
    Plant Physiol Biochem; 2021 Sep; 166():928-938. PubMed ID: 34246107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. microRNAs: Key Players in Plant Response to Metal Toxicity.
    Yang Y; Huang J; Sun Q; Wang J; Huang L; Fu S; Qin S; Xie X; Ge S; Li X; Cheng Z; Wang X; Chen H; Zheng B; He Y
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potential role of microRNAs in plant response to metal toxicity.
    Yang ZM; Chen J
    Metallomics; 2013 Sep; 5(9):1184-90. PubMed ID: 23579282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRNA-based heavy metal homeostasis and plant growth.
    Noman A; Aqeel M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10068-10082. PubMed ID: 28229383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Roles of microRNAs in Plant Heavy Metal Tolerance and Homeostasis.
    Ding Y; Ding L; Xia Y; Wang F; Zhu C
    J Agric Food Chem; 2020 Feb; 68(7):1958-1965. PubMed ID: 32003983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Managing heavy metal toxicity stress in plants: biological and biotechnological tools.
    Ovečka M; Takáč T
    Biotechnol Adv; 2014; 32(1):73-86. PubMed ID: 24333465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review.
    Rai KK; Pandey N; Meena RP; Rai SP
    Ecotoxicol Environ Saf; 2021 Jan; 208():111750. PubMed ID: 33396075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel perspectives for the engineering of abiotic stress tolerance in plants.
    Cabello JV; Lodeyro AF; Zurbriggen MD
    Curr Opin Biotechnol; 2014 Apr; 26():62-70. PubMed ID: 24679260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA398: A Master Regulator of Plant Development and Stress Responses.
    Li J; Song Q; Zuo ZF; Liu L
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants.
    Çelik Ö; Akdaş EY
    Ecotoxicol Environ Saf; 2019 Apr; 170():682-690. PubMed ID: 30580162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses.
    Jodder J
    J Biosci; 2020; 45():. PubMed ID: 32713854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant responses to metals stress: microRNAs in focus.
    Islam W; Naveed H; Idress A; Ishaq DU; Kurfi BG; Zeng F
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69197-69212. PubMed ID: 35951237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance.
    Kumar V; Khare T; Shriram V; Wani SH
    Plant Cell Rep; 2018 Jan; 37(1):61-75. PubMed ID: 28951953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Citric Acid-Mediated Abiotic Stress Tolerance in Plants.
    Tahjib-Ul-Arif M; Zahan MI; Karim MM; Imran S; Hunter CT; Islam MS; Mia MA; Hannan MA; Rhaman MS; Hossain MA; Brestic M; Skalicky M; Murata Y
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering.
    Khan MIR; Chopra P; Chhillar H; Ahanger MA; Hussain SJ; Maheshwari C
    Plant Physiol Biochem; 2021 Jul; 164():260-278. PubMed ID: 34020167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytic Microbial Consortia of Phytohormones-Producing Fungus
    Bilal S; Shahzad R; Khan AL; Kang SM; Imran QM; Al-Harrasi A; Yun BW; Lee IJ
    Front Plant Sci; 2018; 9():1273. PubMed ID: 30233618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.
    Nazir F; Fariduddin Q; Khan TA
    Chemosphere; 2020 Aug; 252():126486. PubMed ID: 32234629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving photosynthesis, plant productivity and abiotic stress tolerance - current trends and future perspectives.
    Nowicka B; Ciura J; Szymańska R; Kruk J
    J Plant Physiol; 2018 Dec; 231():415-433. PubMed ID: 30412849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions of microRNAs in plant stress responses.
    Sunkar R; Li YF; Jagadeeswaran G
    Trends Plant Sci; 2012 Apr; 17(4):196-203. PubMed ID: 22365280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.