These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34246659)

  • 1. A SacB-based system for diverse and multiple genome editing in Gluconobacter oxydans.
    Qin Z; Yu S; Liu L; Wang L; Chen J; Zhou J
    J Biotechnol; 2021 Sep; 338():31-39. PubMed ID: 34246659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in
    Qin Z; Yang Y; Yu S; Liu L; Chen Y; Chen J; Zhou J
    ACS Synth Biol; 2021 Jan; 10(1):84-93. PubMed ID: 33399467
    [No Abstract]   [Full Text] [Related]  

  • 3. Simultaneous transformation of five vectors in Gluconobacter oxydans.
    Liu L; Chen Y; Yu S; Chen J; Zhou J
    Plasmid; 2021 Sep; 117():102588. PubMed ID: 34256060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a vector plasmid for use in Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Jan; 67(1):211-3. PubMed ID: 12619700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A CRISPR/dCpf1-based transcriptional repression system for
    Yang Y; Li N; Zhou J; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):719-736. PubMed ID: 35234393
    [No Abstract]   [Full Text] [Related]  

  • 6. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans.
    Fricke PM; Link T; Gätgens J; Sonntag C; Otto M; Bott M; Polen T
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9267-9282. PubMed ID: 32974745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis.
    Hu Y; Wan H; Li J; Zhou J
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1039-47. PubMed ID: 25952118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a novel shuttle vector for use in Gluconobacter oxydans.
    Zhang L; Lin J; Ma Y; Wei D; Sun M
    Mol Biotechnol; 2010 Nov; 46(3):227-33. PubMed ID: 20524160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of a type II 3-dehydroquinate dehydratase enhances the biotransformation of quinate to 3-dehydroshikimate in Gluconobacter oxydans.
    Nishikura-Imamura S; Matsutani M; Insomphun C; Vangnai AS; Toyama H; Yakushi T; Abe T; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2955-63. PubMed ID: 24352733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Synthesis of pyrroloquinoline quinone by recombinant Gluconobacter oxydans].
    Ye R; Li F; Ding F; Zhao Z; Chen S; Yuan J
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun; 36(6):1138-1149. PubMed ID: 32597063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L; Li K; Zhang H; Liu X; Lin J; Wei D
    J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An easy cloning and expression vector system for Gluconobacter oxydans.
    Schleyer U; Bringer-Meyer S; Sahm H
    Int J Food Microbiol; 2008 Jun; 125(1):91-5. PubMed ID: 17976848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Draft genome sequence of Gluconobacter oxydans WSH-003, a strain that is extremely tolerant of saccharides and alditols.
    Gao L; Zhou J; Liu J; Du G; Chen J
    J Bacteriol; 2012 Aug; 194(16):4455-6. PubMed ID: 22843589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning of Escherichia coli lacZ and lacY genes and their expression in Gluconobacter oxydans and Acetobacter liquefaciens.
    Mostafa HE; Heller KJ; Geis A
    Appl Environ Microbiol; 2002 May; 68(5):2619-23. PubMed ID: 11976147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Gradient Promoters of
    Chen Y; Liu L; Yu S; Li J; Zhou J; Chen J
    Front Bioeng Biotechnol; 2021; 9():673844. PubMed ID: 33898410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.