These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34246844)
1. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review. Lou Y; Chang W; Cui T; Wang J; Qian H; Ma L; Hao X; Zhang D Bioelectrochemistry; 2021 Oct; 141():107883. PubMed ID: 34246844 [TBL] [Abstract][Full Text] [Related]
2. Synergistic action of Bacillus subtilis, Escherichia coli and Shewanella putrefaciens along with Pseudomonas putida on inhibiting mild steel against oxygen corrosion. Suma MS; Basheer R; Sreelekshmy BR; Riyas AH; Bhagya TC; Sha MA; Shibli SMA Appl Microbiol Biotechnol; 2019 Jul; 103(14):5891-5905. PubMed ID: 31104102 [TBL] [Abstract][Full Text] [Related]
3. Damage to offshore production facilities by corrosive microbial biofilms. Vigneron A; Head IM; Tsesmetzis N Appl Microbiol Biotechnol; 2018 Mar; 102(6):2525-2533. PubMed ID: 29423635 [TBL] [Abstract][Full Text] [Related]
4. Microbial corrosion of metallic biomaterials in the oral environment. Xu W; Yu F; Addison O; Zhang B; Guan F; Zhang R; Hou B; Sand W Acta Biomater; 2024 Aug; 184():22-36. PubMed ID: 38942189 [TBL] [Abstract][Full Text] [Related]
5. Biosurfactants: Eco-Friendly and Innovative Biocides against Biocorrosion. Płaza G; Achal V Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245097 [TBL] [Abstract][Full Text] [Related]
6. The role of biofilms in the corrosion of steel in marine environments. Procópio L World J Microbiol Biotechnol; 2019 Apr; 35(5):73. PubMed ID: 31037431 [TBL] [Abstract][Full Text] [Related]
7. Biofilms: strategies for metal corrosion inhibition employing microorganisms. Zuo R Appl Microbiol Biotechnol; 2007 Oct; 76(6):1245-53. PubMed ID: 17701408 [TBL] [Abstract][Full Text] [Related]
8. The control of microbially induced corrosion by methyl eugenol - A dietary phytochemical with quorum sensing inhibitory potential. Packiavathy IAS; Maruthamuthu S; Gnanaselvan G; Manoharan S; Paul JBJ; Annapoorani A; Kannappan A; Ravi AV Bioelectrochemistry; 2019 Aug; 128():186-192. PubMed ID: 31004912 [TBL] [Abstract][Full Text] [Related]
9. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. Liu B; Li Z; Yang X; Du C; Li X Bioelectrochemistry; 2020 Oct; 135():107551. PubMed ID: 32470907 [TBL] [Abstract][Full Text] [Related]
10. Burning question: Are there sustainable strategies to prevent microbial metal corrosion? Wang D; Zhou E; Xu D; Lovley DR Microb Biotechnol; 2023 Nov; 16(11):2026-2035. PubMed ID: 37796110 [TBL] [Abstract][Full Text] [Related]
11. Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion. Tripathi AK; Thakur P; Saxena P; Rauniyar S; Gopalakrishnan V; Singh RN; Gadhamshetty V; Gnimpieba EZ; Jasthi BK; Sani RK Front Microbiol; 2021; 12():754140. PubMed ID: 34777309 [TBL] [Abstract][Full Text] [Related]
12. The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Moura V; Ribeiro I; Moriggi P; Capão A; Salles C; Bitati S; Procópio L Arch Microbiol; 2018 Dec; 200(10):1447-1456. PubMed ID: 30109372 [TBL] [Abstract][Full Text] [Related]
13. Effects of marine eutrophication environment on microbial corrosion: A review. Guo D; Wang Y; Zhang Y; Duan J; Guan F; Hou B Mar Pollut Bull; 2024 Aug; 205():116637. PubMed ID: 38955090 [TBL] [Abstract][Full Text] [Related]
14. Effect of Quorum Sensing on the Ability of Scarascia G; Lehmann R; Machuca LL; Morris C; Cheng KY; Kaksonen A; Hong PY Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628147 [TBL] [Abstract][Full Text] [Related]
15. Control of metallic corrosion through microbiological route. Maruthamuthu S; Ponmariappan S; Mohanan S; Palaniswamy N; Palaniappan R; Rengaswamy NS Indian J Exp Biol; 2003 Sep; 41(9):1023-9. PubMed ID: 15242295 [TBL] [Abstract][Full Text] [Related]
16. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view. Ma Y; Zhang Y; Zhang R; Guan F; Hou B; Duan J Appl Microbiol Biotechnol; 2020 Jan; 104(2):515-525. PubMed ID: 31807887 [TBL] [Abstract][Full Text] [Related]
17. Exogenous autoinducer-2 inhibits biofilm development of Desulfovibrio sp. Huiquan2017. Li E; Wu J; Zhang D World J Microbiol Biotechnol; 2021 Jun; 37(7):124. PubMed ID: 34170406 [TBL] [Abstract][Full Text] [Related]
18. A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion. Little B; Lee J; Ray R Biofouling; 2007; 23(1-2):87-97. PubMed ID: 17453733 [TBL] [Abstract][Full Text] [Related]
19. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion. Beale DJ; Morrison PD; Key C; Palombo EA Water Sci Technol; 2014; 69(1):1-8. PubMed ID: 24434961 [TBL] [Abstract][Full Text] [Related]
20. Microbiologically-influenced corrosion of orthodontic alloys: a review of proposed mechanisms and effects. Papadopoulou K; Eliades T Aust Orthod J; 2009 May; 25(1):63-75. PubMed ID: 19634466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]