These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34246851)

  • 41. Specimen-Specific Finite Element Models for Predicting Fretting Wear in Total Hip Arthroplasty Tapers.
    Baumann AP; Vesnovsky O; Topoleski LDT; Donaldson FE; McMinn NLL; Vignola A; Di Prima M
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 31913446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stress enhancement and fatigue susceptibility of porous coated Ti-6Al-4V implants: an elastic analysis.
    Messersmith PB; Cooke FW
    J Biomed Mater Res; 1990 May; 24(5):591-604. PubMed ID: 2324129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective laser melted titanium alloys for hip implant applications: Surface modification with new method of polymer grafting.
    Ghosh S; Abanteriba S; Wong S; Houshyar S
    J Mech Behav Biomed Mater; 2018 Nov; 87():312-324. PubMed ID: 30103113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro corrosion testing of modular hip tapers.
    Goldberg JR; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2003 Feb; 64(2):78-93. PubMed ID: 12516082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A review on the finite element simulation of fretting wear and corrosion in the taper junction of hip replacement implants.
    Feyzi M; Fallahnezhad K; Taylor M; Hashemi R
    Comput Biol Med; 2021 Mar; 130():104196. PubMed ID: 33516962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH.
    Royhman D; Patel M; Jacobs JJ; Wimmer MA; Hallab NJ; Mathew MT
    Med Eng Phys; 2018 Feb; 52():1-9. PubMed ID: 29290499
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wear performance of self-mating contact pairs of TiN and TiAlN coatings on orthopedic grade Ti-6Al-4V.
    Kim H; Kim CY; Kim DW; Lee IS; Lee GH; Park JC; Lee SJ; Lee KY
    Biomed Mater; 2010 Aug; 5(4):044108. PubMed ID: 20683130
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps.
    Xie W; Zheng M; Wang J; Li X
    J Prosthet Dent; 2020 Jan; 123(1):163-172. PubMed ID: 30982620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid.
    Singh R; Kurella A; Dahotre NB
    J Biomater Appl; 2006 Jul; 21(1):49-73. PubMed ID: 16443617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Numerical Study on the Effect of Debris Layer on Fretting Wear.
    Yue T; Abdel Wahab M
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of β type Ti-33.6Nb-4Sn alloy.
    Yamako G; Chosa E; Totoribe K; Hanada S; Masahashi N; Yamada N; Itoi E
    Med Eng Phys; 2014 Dec; 36(12):1665-71. PubMed ID: 25282098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wear resistance of experimental Ti-Cu alloys.
    Ohkubo C; Shimura I; Aoki T; Hanatani S; Hosoi T; Hattori M; Oda Y; Okabe T
    Biomaterials; 2003 Sep; 24(20):3377-81. PubMed ID: 12809765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of impact assembly on the interface deformation and fretting corrosion of modular hip tapers: An in vitro study.
    Panagiotidou A; Cobb T; Meswania J; Skinner J; Hart A; Haddad F; Blunn G
    J Orthop Res; 2018 Jan; 36(1):405-416. PubMed ID: 28485507
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings.
    Oskouei RH; Fallahnezhad K; Kuppusami S
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduced stress shielding with limited micromotions using a carbon fibre composite biomimetic hip stem: a finite element model.
    Caouette C; Yahia LH; Bureau MN
    Proc Inst Mech Eng H; 2011 Sep; 225(9):907-19. PubMed ID: 22070028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.
    Marin E; Offoiach R; Lanzutti A; Regis M; Fusi S; Fedrizzi L
    Biomed Mater Eng; 2014; 24(1):581-92. PubMed ID: 24211942
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fretting-corrosion behavior in hip implant modular junctions: The influence of friction energy and pH variation.
    Royhman D; Patel M; Runa MJ; Wimmer MA; Jacobs JJ; Hallab NJ; Mathew MT
    J Mech Behav Biomed Mater; 2016 Sep; 62():570-587. PubMed ID: 27310572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
    Khor KA; Gu YW; Pan D; Cheang P
    Biomaterials; 2004 Aug; 25(18):4009-17. PubMed ID: 15046891
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro mechanical integrity of hydroxyapatite coatings on Ti-6Al-4V implants under shear loading.
    Zhang C; Leng Y; Chen J
    J Biomed Mater Res; 2001 Sep; 56(3):342-50. PubMed ID: 11372051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
    Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ
    Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.