BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34246862)

  • 1. Unraveling linker histone interactions in nucleosomes.
    Hao F; Kale S; Dimitrov S; Hayes JJ
    Curr Opin Struct Biol; 2021 Dec; 71():87-93. PubMed ID: 34246862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
    Wu H; Dalal Y; Papoian GA
    J Mol Biol; 2021 Mar; 433(6):166881. PubMed ID: 33617899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms.
    Louro JA; Boopathi R; Beinsteiner B; Mohideen Patel AK; Cheng TC; Angelov D; Hamiche A; Bendar J; Kale S; Klaholz BP; Dimitrov S
    Structure; 2023 Feb; 31(2):201-212.e5. PubMed ID: 36610392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.
    Zhou BR; Feng H; Ghirlando R; Li S; Schwieters CD; Bai Y
    J Mol Biol; 2016 Oct; 428(20):3948-3959. PubMed ID: 27558112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
    Caterino TL; Fang H; Hayes JJ
    Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes.
    Shen CH; Allan J
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain.
    Fang H; Clark DJ; Hayes JJ
    Nucleic Acids Res; 2012 Feb; 40(4):1475-84. PubMed ID: 22021384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylation-modulated communication between the H3 N-terminal tail domain and the intrinsically disordered H1 C-terminal domain.
    Hao F; Murphy KJ; Kujirai T; Kamo N; Kato J; Koyama M; Okamato A; Hayashi G; Kurumizaka H; Hayes JJ
    Nucleic Acids Res; 2020 Nov; 48(20):11510-11520. PubMed ID: 33125082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric linker histone association directs the asymmetric rearrangement of core histone interactions in a positioned nucleosome containing a thyroid hormone response element.
    Guschin D; Chandler S; Wolffe AP
    Biochemistry; 1998 Jun; 37(24):8629-36. PubMed ID: 9628724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0).
    George EM; Izard T; Anderson SD; Brown DT
    J Biol Chem; 2010 Jul; 285(27):20891-6. PubMed ID: 20444700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the influence of linker histone variants on chromatosome dynamics and energetics.
    Woods DC; Wereszczynski J
    Nucleic Acids Res; 2020 Apr; 48(7):3591-3604. PubMed ID: 32128577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome.
    Syed SH; Goutte-Gattat D; Becker N; Meyer S; Shukla MS; Hayes JJ; Everaers R; Angelov D; Bednar J; Dimitrov S
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9620-5. PubMed ID: 20457934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome.
    Hayes JJ; Kaplan R; Ura K; Pruss D; Wolffe A
    J Biol Chem; 1996 Oct; 271(42):25817-22. PubMed ID: 8824211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes.
    Burge NL; Thuma JL; Hong ZZ; Jamison KB; Ottesen JJ; Poirier MG
    Biochemistry; 2022 Apr; 61(8):625-638. PubMed ID: 35377618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.