BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34246862)

  • 41. High mobility group protein 14 and 17 can prevent the close packing of nucleosomes by increasing the strength of protein contacts in the linker DNA.
    Tremethick DJ; Hyman L
    J Biol Chem; 1996 May; 271(20):12009-16. PubMed ID: 8662614
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linker histone-dependent organization and dynamics of nucleosome entry/exit DNAs.
    Sivolob A; Prunell A
    J Mol Biol; 2003 Aug; 331(5):1025-40. PubMed ID: 12927539
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Histone H3 tail modifications regulate structure and dynamics of the H1 C-terminal domain within nucleosomes.
    Das SK; Kumar A; Hao F; DiPiazza ARC; Lee TH; Hayes JJ
    bioRxiv; 2023 May; ():. PubMed ID: 37214834
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system.
    Zheng C; Hayes JJ
    J Biol Chem; 2003 Jun; 278(26):24217-24. PubMed ID: 12697747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Germline-specific H1 variants: the "sexy" linker histones.
    Pérez-Montero S; Carbonell A; Azorín F
    Chromosoma; 2016 Mar; 125(1):1-13. PubMed ID: 25921218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural insights into the histone H1-nucleosome complex.
    Zhou BR; Feng H; Kato H; Dai L; Yang Y; Zhou Y; Bai Y
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19390-5. PubMed ID: 24218562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Docking data of selected human linker histone variants to the nucleosome.
    de Wit H; Koorsen G
    Data Brief; 2020 Jun; 30():105580. PubMed ID: 32337329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. H1-nucleosome interactions and their functional implications.
    Bednar J; Hamiche A; Dimitrov S
    Biochim Biophys Acta; 2016 Mar; 1859(3):436-43. PubMed ID: 26477489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Localization of histone H1 binding sites within the nucleosome by UV-induced H1-DNA crosslinking in vivo.
    Belikov S; Karpov V
    J Biomol Struct Dyn; 1998 Aug; 16(1):35-9. PubMed ID: 9745892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.
    Okuwaki M; Abe M; Hisaoka M; Nagata K
    Mol Cell Biol; 2016 Nov; 36(21):2681-2696. PubMed ID: 27528617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of maize chromatin-associated HMG proteins with mononucleosomes: role of core and linker histones.
    Lichota J; Grasser KD
    Biol Chem; 2003 Jul; 384(7):1019-27. PubMed ID: 12956418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binding of the globular domain of linker histones H5/H1 to the nucleosome: a hypothesis.
    Crane-Robinson C; Ptitsyn OB
    Protein Eng; 1989 Aug; 2(8):577-82. PubMed ID: 2682606
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mouse Dnmt3a preferentially methylates linker DNA and is inhibited by histone H1.
    Takeshima H; Suetake I; Tajima S
    J Mol Biol; 2008 Nov; 383(4):810-21. PubMed ID: 18823905
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epithelial cells-enriched lncRNA SNHG8 regulates chromatin condensation by binding to Histone H1s.
    He P; Zhang C; Ji Y; Ge MK; Yu Y; Zhang N; Yang S; Yu JX; Shen SM; Chen GQ
    Cell Death Differ; 2022 Aug; 29(8):1569-1581. PubMed ID: 35140358
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multifunctionality of the linker histones: an emerging role for protein-protein interactions.
    McBryant SJ; Lu X; Hansen JC
    Cell Res; 2010 May; 20(5):519-28. PubMed ID: 20309017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1.
    Sridhar A; Orozco M; Collepardo-Guevara R
    Nucleic Acids Res; 2020 Jun; 48(10):5318-5331. PubMed ID: 32356891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.