These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34247478)

  • 1. Extending the Cyclability of Alkaline Zinc-Air Batteries: Synergistic Roles of Li
    Thakur P; Alam K; Roy A; Downing C; Nicolosi V; Sen P; Narayanan TN
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33112-33122. PubMed ID: 34247478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Cycling Performance of Rechargeable Zinc-Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive.
    Khezri R; Hosseini S; Lahiri A; Motlagh SR; Nguyen MT; Yonezawa T; Kheawhom S
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33023274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on failure mechanism on rechargeable alkaline zinc-Air battery during charge/discharge cycles at different depths of discharge.
    Zhang D; Hu W
    Front Chem; 2023; 11():1121215. PubMed ID: 36742038
    [No Abstract]   [Full Text] [Related]  

  • 5. A Co-Doped MnO
    Ge B; Sun Y; Guo J; Yan X; Fernandez C; Peng Q
    Small; 2019 Aug; 15(34):e1902220. PubMed ID: 31267644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch-Based Superabsorbent Hydrogel with High Electrolyte Retention Capability and Synergistic Interface Engineering for Long-Lifespan Flexible Zinc-Air Batteries.
    Fan X; Zhang R; Sui S; Liu X; Liu J; Shi C; Zhao N; Zhong C; Hu W
    Angew Chem Int Ed Engl; 2023 May; 62(22):e202302640. PubMed ID: 36964969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte.
    Liu Z; Pulletikurthi G; Endres F
    ACS Appl Mater Interfaces; 2016 May; 8(19):12158-64. PubMed ID: 27119430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance.
    Zhao HB; Hu CJ; Cheng HW; Fang JH; Xie YP; Fang WY; Doan TN; Hoang TK; Xu JQ; Chen P
    Sci Rep; 2016 May; 6():25809. PubMed ID: 27174224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities.
    Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J
    Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Electrically Rechargeable Zinc-Air Batteries.
    Fu J; Liang R; Liu G; Yu A; Bai Z; Yang L; Chen Z
    Adv Mater; 2019 Aug; 31(31):e1805230. PubMed ID: 30536643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deeply Rechargeable and Hydrogen-Evolution-Suppressing Zinc Anode in Alkaline Aqueous Electrolyte.
    Zhang Y; Wu Y; You W; Tian M; Huang PW; Zhang Y; Sun Z; Ma Y; Hao T; Liu N
    Nano Lett; 2020 Jun; 20(6):4700-4707. PubMed ID: 32453958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Life and Highly Utilized Zinc Anode for Aqueous Batteries Enabled by Electrolyte Additives with Synergistic Effects.
    Liu B; Wu T; Ma F; Zhong C; Hu W
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18431-18438. PubMed ID: 35413179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Dimethyl Sulfoxide as Electrolyte Additive on Anodic Dissolution of Alkaline Zinc-Air Flow Battery.
    Hosseini S; Abbasi A; Uginet LO; Haustraete N; Praserthdam S; Yonezawa T; Kheawhom S
    Sci Rep; 2019 Oct; 9(1):14958. PubMed ID: 31628355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kirigami-Inspired Flexible and Stretchable Zinc-Air Battery Based on Metal-Coated Sponge Electrodes.
    Qu S; Liu B; Wu J; Zhao Z; Liu J; Ding J; Han X; Deng Y; Zhong C; Hu W
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54833-54841. PubMed ID: 33237719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discharge performance of solid-state oxygen shuttle metal-air battery using Ca-stabilized ZrO2 electrolyte.
    Inoishi A; Kim HH; Sakai T; Ju YW; Ida S; Ishihara T
    ChemSusChem; 2015 Apr; 8(7):1264-9. PubMed ID: 25727525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ultrastable Rechargeable Zinc-Air Battery Using a Janus Superwetting Air Electrode.
    Zhang X; Wang X; Guan Z; Fang J; Sui R; Pei J; Qin Y; Wei D; Zhu W; Zhuang Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52849-52856. PubMed ID: 36394544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation Additive Enabled Rechargeable LiOH-Based Lithium-Oxygen Batteries.
    Bi X; Li M; Liu C; Yuan Y; Wang H; Key B; Wang R; Shahbazian-Yassar R; Curtiss LA; Lu J; Amine K
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22978-22982. PubMed ID: 33017504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A High-Performance Rechargeable Mg(2+)/Li(+) Hybrid Battery Using One-Dimensional Mesoporous TiO2(B) Nanoflakes as the Cathode.
    Su S; NuLi Y; Huang Z; Miao Q; Yang J; Wang J
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7111-7. PubMed ID: 26931801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis.
    Wu X; Han X; Ma X; Zhang W; Deng Y; Zhong C; Hu W
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12574-12583. PubMed ID: 28319373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.