These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 34247591)
1. Augmented peroxisomal ROS buffering capacity renders oxidative and thermal stress cross-tolerance in yeast. Lin NX; He RZ; Xu Y; Yu XW Microb Cell Fact; 2021 Jul; 20(1):131. PubMed ID: 34247591 [TBL] [Abstract][Full Text] [Related]
2. Peroxisomal catalases from the yeasts Pichia pastoris and Kluyveromyces lactis as models for oxidative damage in higher eukaryotes. Gómez S; Navas-Yuste S; Payne AM; Rivera W; López-Estepa M; Brangbour C; Fullà D; Juanhuix J; Fernández FJ; Vega MC Free Radic Biol Med; 2019 Sep; 141():279-290. PubMed ID: 31238127 [TBL] [Abstract][Full Text] [Related]
3. A subcellular proteome atlas of the yeast Komagataella phaffii. Valli M; Grillitsch K; Grünwald-Gruber C; Tatto NE; Hrobath B; Klug L; Ivashov V; Hauzmayer S; Koller M; Tir N; Leisch F; Gasser B; Graf AB; Altmann F; Daum G; Mattanovich D FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31922548 [TBL] [Abstract][Full Text] [Related]
4. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Sandalio LM; Romero-Puertas MC Ann Bot; 2015 Sep; 116(4):475-85. PubMed ID: 26070643 [TBL] [Abstract][Full Text] [Related]
5. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Wang B; Van Veldhoven PP; Brees C; Rubio N; Nordgren M; Apanasets O; Kunze M; Baes M; Agostinis P; Fransen M Free Radic Biol Med; 2013 Dec; 65():882-894. PubMed ID: 23988789 [TBL] [Abstract][Full Text] [Related]
6. Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy. Carranza ADV; Saragusti A; Chiabrando GA; Carrari F; Asis R Phytomedicine; 2020 Jan; 66():153132. PubMed ID: 31790899 [TBL] [Abstract][Full Text] [Related]
7. Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris. Lin NX; He RZ; Xu Y; Yu XW Biotechnol Biofuels; 2021 Jul; 14(1):160. PubMed ID: 34284814 [TBL] [Abstract][Full Text] [Related]
9. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Manivannan S; de Boer R; Veenhuis M; van der Klei IJ Autophagy; 2013 Jul; 9(7):1044-56. PubMed ID: 23614977 [TBL] [Abstract][Full Text] [Related]
10. Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. Ramos-Moreno L; Ramos J; Michán C World J Microbiol Biotechnol; 2019 Oct; 35(11):170. PubMed ID: 31673816 [TBL] [Abstract][Full Text] [Related]
11. Redox regulated peroxisome homeostasis. Wang X; Li S; Liu Y; Ma C Redox Biol; 2015; 4():104-8. PubMed ID: 25545794 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Choo JH; Lee SB; Moon HY; Lee KH; Yoo SJ; Kim KP; Kang HA J Microbiol; 2021 Feb; 59(2):151-163. PubMed ID: 33527316 [TBL] [Abstract][Full Text] [Related]
13. Reactive oxygen species and peroxisomes: struggling for balance. Bonekamp NA; Völkl A; Fahimi HD; Schrader M Biofactors; 2009; 35(4):346-55. PubMed ID: 19459143 [TBL] [Abstract][Full Text] [Related]
14. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Fransen M; Nordgren M; Wang B; Apanasets O Biochim Biophys Acta; 2012 Sep; 1822(9):1363-73. PubMed ID: 22178243 [TBL] [Abstract][Full Text] [Related]
15. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Ivashchenko O; Van Veldhoven PP; Brees C; Ho YS; Terlecky SR; Fransen M Mol Biol Cell; 2011 May; 22(9):1440-51. PubMed ID: 21372177 [TBL] [Abstract][Full Text] [Related]
16. Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos. Jansen S; Cashman K; Thompson JG; Pantaleon M; Kaye PL Reproduction; 2009 Sep; 138(3):493-505. PubMed ID: 19531609 [TBL] [Abstract][Full Text] [Related]
17. The impaired redox balance in peroxisomes of catalase knockout mice accelerates nonalcoholic fatty liver disease through endoplasmic reticulum stress. Hwang I; Uddin MJ; Pak ES; Kang H; Jin EJ; Jo S; Kang D; Lee H; Ha H Free Radic Biol Med; 2020 Feb; 148():22-32. PubMed ID: 31877356 [TBL] [Abstract][Full Text] [Related]
18. Evidence of oxidative stress in very long chain fatty acid--treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Baarine M; Andréoletti P; Athias A; Nury T; Zarrouk A; Ragot K; Vejux A; Riedinger JM; Kattan Z; Bessede G; Trompier D; Savary S; Cherkaoui-Malki M; Lizard G Neuroscience; 2012 Jun; 213():1-18. PubMed ID: 22521832 [TBL] [Abstract][Full Text] [Related]
19. Dysfunctional lysosomal autophagy leads to peroxisomal oxidative burnout and damage during endotoxin-induced stress. Vasko R; Goligorsky MS Autophagy; 2013 Mar; 9(3):442-4. PubMed ID: 23328407 [TBL] [Abstract][Full Text] [Related]
20. Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. Sandalio LM; Rodríguez-Serrano M; Romero-Puertas MC; del Río LA Subcell Biochem; 2013; 69():231-55. PubMed ID: 23821152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]