These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 34248247)

  • 21. Noise properties for three weighted Feldkamp algorithms using a 256-detecotor row CT-scanner: case study for hepatic volumetric cine imaging.
    Mori S; Endo M; Obata T; Kishimoto R; Kato H; Kandatsu S; Tsujii H; Tanada S
    Eur J Radiol; 2006 Aug; 59(2):289-94. PubMed ID: 16567076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FDK Half-Scan with a Heuristic Weighting Scheme on a Flat Panel Detector-Based Cone Beam CT (FDKHSCW).
    Yang D; Ning R
    Int J Biomed Imaging; 2006; 2006():83983. PubMed ID: 23165052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.
    Stankovic U; van Herk M; Ploeger LS; Sonke JJ
    Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scatter correction for cone-beam computed tomography using moving blocker strips: a preliminary study.
    Wang J; Mao W; Solberg T
    Med Phys; 2010 Nov; 37(11):5792-800. PubMed ID: 21158291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical evaluation of the weighted Feldkamp algorithms applied to the 256-detector row CT scanner for volumetric cine imaging.
    Mori S; Endo M; Kondo C; Tanada S
    Acad Radiol; 2006 Jun; 13(6):701-12. PubMed ID: 16679272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correction of Bowtie filter induced scatter signals based on air scan data and object scan data.
    Zhang G; Wang Y; Chen W; Li T; Tian Y
    Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35276688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-fidelity artifact correction for cone-beam CT imaging of the brain.
    Sisniega A; Zbijewski W; Xu J; Dang H; Stayman JW; Yorkston J; Aygun N; Koliatsos V; Siewerdsen JH
    Phys Med Biol; 2015 Feb; 60(4):1415-39. PubMed ID: 25611041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.
    Reitz I; Hesse BM; Nill S; Tücking T; Oelfke U
    Z Med Phys; 2009; 19(3):158-72. PubMed ID: 19761093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. WE-G-217BCD-07: Implementation and Evaluation of Helical On-Board CBCT and Exact Image Reconstruction.
    Tan J; Li H; Parikh P; Izaguirre E; Li H; Yang D
    Med Phys; 2012 Jun; 39(6Part28):3973-3974. PubMed ID: 28519621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local filtration based scatter correction for cone-beam CT using primary modulation.
    Zhu L
    Med Phys; 2016 Nov; 43(11):6199. PubMed ID: 27806607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT.
    Mao W; Liu C; Gardner SJ; Siddiqui F; Snyder KC; Kumarasiri A; Zhao B; Kim J; Wen NW; Movsas B; Chetty IJ
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818823054. PubMed ID: 30803367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging.
    Dang H; Stayman JW; Sisniega A; Xu J; Zbijewski W; Wang X; Foos DH; Aygun N; Koliatsos VE; Siewerdsen JH
    Phys Med Biol; 2015 Aug; 60(16):6153-75. PubMed ID: 26225912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A filtered backprojection algorithm for cone beam reconstruction using rotational filtering under helical source trajectory.
    Tang X; Hsieh J
    Med Phys; 2004 Nov; 31(11):2949-60. PubMed ID: 15587646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach.
    Cho S; Lim S; Kim C; Wi S; Kwon T; Youn WS; Lee SH; Kang BS; Cho S
    Phys Med; 2020 Feb; 70():1-9. PubMed ID: 31931280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SU-E-I-04: Implementation of a Fast Monte Carlo Scatter Correction for Cone- Beam Computed Tomography.
    Watson P; Mainegra-Hing E; Soisson E; Naqa IE; Seuntjens J
    Med Phys; 2012 Jun; 39(6Part4):3625. PubMed ID: 28519491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sci-Fri PM: Delivery - 12: Scatter-B-Gon: Implementing a fast Monte Carlo cone-beam computed tomography scatter correction on real data.
    Watson P; Mainegra-Hing E; Soisson E; Naqa IE; Seuntjens J
    Med Phys; 2012 Jul; 39(7Part4):4644. PubMed ID: 28516651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A shift-invariant filtered backprojection (FBP) cone-beam reconstruction algorithm for the source trajectory of two concentric circles using an equal weighting scheme.
    Zhuang T; Nett BE; Leng S; Chen GH
    Phys Med Biol; 2006 Jun; 51(12):3189-210. PubMed ID: 16757871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Segmentation-free empirical beam hardening correction for CT.
    Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M
    Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A modified McKinnon-Bates (MKB) algorithm for improved 4D cone-beam computed tomography (CBCT) of the lung.
    Star-Lack J; Sun M; Oelhafen M; Berkus T; Pavkovich J; Brehm M; Arheit M; Paysan P; Wang A; Munro P; Seghers D; Carvalho LM; Verbakel WFAR
    Med Phys; 2018 Jun; ():. PubMed ID: 29869784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.