These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 3424868)
21. MICROBIAL METABOLISM OF AROMATIC COMPOUNDS. I. DECOMPOSITION OF PHENOLIC COMPOUNDS AND AROMATIC HYDROCARBONS BY PHENOL-ADAPTED BACTERIA. TABAK HH; CHAMBERS CW; KABLER PW J Bacteriol; 1964 Apr; 87(4):910-9. PubMed ID: 14137630 [TBL] [Abstract][Full Text] [Related]
22. The biotransformation of three 14C-labelled phenolic compounds in twelve species of freshwater fish. Layiwola PJ; Linnecar DF; Knights B Xenobiotica; 1983 Feb; 13(2):107-13. PubMed ID: 6880238 [TBL] [Abstract][Full Text] [Related]
23. [Study on biodegradation of phenols in river water]. Zhao J; Zhang K; Li C; Luo P Hua Xi Yi Ke Da Xue Xue Bao; 2000 Sep; 31(3):367-9. PubMed ID: 12545836 [TBL] [Abstract][Full Text] [Related]
24. Relationship between substrate activity and pKa value of phenols on sulfotransferase from Eubacterium A-44. Konishi-Imamura L; Kim DH; Kobashi K Biochem Int; 1992 Dec; 28(4):725-34. PubMed ID: 1482408 [TBL] [Abstract][Full Text] [Related]
26. Effect of adaptation to phenol on biodegradation of monosubstituted phenols by aquatic microbial communities. Shimp RJ; Pfaender FK Appl Environ Microbiol; 1987 Jul; 53(7):1496-9. PubMed ID: 3662503 [TBL] [Abstract][Full Text] [Related]
27. Some phenolic metabolites of 2, 4-diaminotoluene in the rabbit, rat and guinea-pig. Waring RH; Pheasant AE Xenobiotica; 1976 Apr; 6(4):257-62. PubMed ID: 820087 [TBL] [Abstract][Full Text] [Related]
28. The metabolism of lindance and its metabolites gamma-2,3,4,5,6-pentachlorocyclohexene, pentachlorobenzene, and pentachlorophenol in rats and the pathways of lindance metabolism. Engst R; Macholz RM; Kujawa M; Lewerenz HJ; Plass R J Environ Sci Health B; 1976; 11(2):95-117. PubMed ID: 57975 [TBL] [Abstract][Full Text] [Related]
29. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil. Levén L; Nyberg K; Korkea-Aho L; Schnürer A Sci Total Environ; 2006 Jul; 364(1-3):229-38. PubMed ID: 16125214 [TBL] [Abstract][Full Text] [Related]
30. Fluorometric determination of phenol and p-cresol in urine by precolumn high-performance liquid chromatography using 4-(N-phthalimidinyl)benzenesulfonyl chloride. Tsuruta Y; Watanabe S; Inoue H Anal Biochem; 1996 Dec; 243(1):86-91. PubMed ID: 8954529 [TBL] [Abstract][Full Text] [Related]
31. Electrochemical destruction of p-chlorophenol and p-nitrophenol -- Influence of surfactants and anode materials. Sripriya R; Chandrasekaran M; Subramanian K; Asokan K; Noel M Chemosphere; 2007 Sep; 69(2):254-61. PubMed ID: 17509652 [TBL] [Abstract][Full Text] [Related]
32. Cometabolic degradation of o-cresol and 2,6-dimethylphenol by Penicillium frequentans Bi 7/2. Hofrichter M; Bublitz F; Fritsche W J Basic Microbiol; 1995; 35(5):303-13. PubMed ID: 8568641 [TBL] [Abstract][Full Text] [Related]
33. trans,trans-Muconic acid, an open-chain urinary metabolite of benzene in mice. Quantification by high-pressure liquid chromatography. Gad-El Karim MM; Ramanujam VM; Legator MS Xenobiotica; 1985 Mar; 15(3):211-20. PubMed ID: 4024657 [TBL] [Abstract][Full Text] [Related]
34. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. Unell M; Kabelitz N; Jansson JK; Heipieper HJ FEMS Microbiol Lett; 2007 Jan; 266(2):138-43. PubMed ID: 17233723 [TBL] [Abstract][Full Text] [Related]
35. Determination of phenol, m-, o- and p-cresol, p-aminophenol and p-nitrophenol in urine by high-performance liquid chromatography. Brega A; Prandini P; Amaglio C; Pafumi E J Chromatogr; 1990 Dec; 535(1-2):311-6. PubMed ID: 2089061 [TBL] [Abstract][Full Text] [Related]
36. Species differences, influence of dose and application on biotransformation of phenol in fish. Nagel R Xenobiotica; 1983 Feb; 13(2):101-6. PubMed ID: 6880237 [TBL] [Abstract][Full Text] [Related]
37. Gentisic acid and its 3- and 4-methyl-substituted homologoues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Hopper DJ; Chapman PJ Biochem J; 1971 Mar; 122(1):19-28. PubMed ID: 4330964 [TBL] [Abstract][Full Text] [Related]
38. Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Erb RW; Eichner CA; Wagner-Döbler I; Timmis KN Nat Biotechnol; 1997 Apr; 15(4):378-82. PubMed ID: 9094142 [TBL] [Abstract][Full Text] [Related]
39. Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Aelion CM; Swindoll CM; Pfaender FK Appl Environ Microbiol; 1987 Sep; 53(9):2212-7. PubMed ID: 3314709 [TBL] [Abstract][Full Text] [Related]
40. p-Cresyl glucuronide is a major metabolite of p-cresol in mouse: in contrast to p-cresyl sulphate, p-cresyl glucuronide fails to promote insulin resistance. Koppe L; Alix PM; Croze ML; Chambert S; Vanholder R; Glorieux G; Fouque D; Soulage CO Nephrol Dial Transplant; 2017 Dec; 32(12):2000-2009. PubMed ID: 28992089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]