BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34248886)

  • 1. Bayesian Generalized Linear Model for Simulating Bacterial Inactivation/Growth Considering Variability and Uncertainty.
    Hiura S; Abe H; Koyama K; Koseki S
    Front Microbiol; 2021; 12():674364. PubMed ID: 34248886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming kinetic model into a stochastic inactivation model: Statistical evaluation of stochastic inactivation of individual cells in a bacterial population.
    Hiura S; Abe H; Koyama K; Koseki S
    Food Microbiol; 2020 Oct; 91():103508. PubMed ID: 32539982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept.
    Garre A; Zwietering MH; den Besten HMW
    Food Res Int; 2020 Nov; 137():109374. PubMed ID: 33233076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes.
    Pouillot R; Albert I; Cornu M; Denis JB
    Int J Food Microbiol; 2003 Mar; 81(2):87-104. PubMed ID: 12457583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The COM-Poisson Process for Stochastic Modeling of Osmotic Inactivation Dynamics of
    Polese P; Del Torre M; Stecchini ML
    Front Microbiol; 2021; 12():681468. PubMed ID: 34305844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study.
    Roosa K; Luo R; Chowell G
    Math Biosci Eng; 2019 May; 16(5):4299-4313. PubMed ID: 31499663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty.
    Garre A; Zwietering MH; van Boekel MAJS
    Int J Food Microbiol; 2022 Nov; 380():109871. PubMed ID: 35985079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Describing the Individual Spore Variability and the Parameter Uncertainty in Bacterial Survival Kinetics Model by Using Second-Order Monte Carlo Simulation.
    Abe H; Koyama K; Takeoka K; Doto S; Koseki S
    Front Microbiol; 2020; 11():985. PubMed ID: 32508792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic modeling of variability in survival behavior of Bacillus simplex spore population during isothermal inactivation at the single cell level using a Monte Carlo simulation.
    Abe H; Koyama K; Kawamura S; Koseki S
    Food Microbiol; 2019 Sep; 82():436-444. PubMed ID: 31027803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Describing Uncertainty in
    Koyama K; Aspridou Z; Koseki S; Koutsoumanis K
    Front Microbiol; 2019; 10():2239. PubMed ID: 31681187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic simulation for death probability of bacterial population considering variability in individual cell inactivation time and initial number of cells.
    Koyama K; Abe H; Kawamura S; Koseki S
    Int J Food Microbiol; 2019 Feb; 290():125-131. PubMed ID: 30326383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.
    Francis RA; Geedipally SR; Guikema SD; Dhavala SS; Lord D; LaRocca S
    Risk Anal; 2012 Jan; 32(1):167-83. PubMed ID: 21801191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation.
    Garre A; Egea JA; Esnoz A; Palop A; Fernandez PS
    Food Res Int; 2019 May; 119():76-83. PubMed ID: 30884713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method.
    Zonta ZJ; Flotats X; Magrí A
    Environ Technol; 2014 Aug; 35(13-16):1618-29. PubMed ID: 24956752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculating stochastic inactivation of individual cells in a bacterial population using variability in individual cell inactivation time and initial cell number.
    Koyama K; Abe H; Kawamura S; Koseki S
    J Theor Biol; 2019 May; 469():172-179. PubMed ID: 30831174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting industrial-scale cell culture seed trains-A Bayesian framework for model fitting and parameter estimation, dealing with uncertainty in measurements and model parameters, applied to a nonlinear kinetic cell culture model, using an MCMC method.
    Hernández Rodríguez T; Posch C; Schmutzhard J; Stettner J; Weihs C; Pörtner R; Frahm B
    Biotechnol Bioeng; 2019 Nov; 116(11):2944-2959. PubMed ID: 31347693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the double Poisson generalized linear model.
    Zou Y; Geedipally SR; Lord D
    Accid Anal Prev; 2013 Oct; 59():497-505. PubMed ID: 23954684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling.
    Payne EH; Hardin JW; Egede LE; Ramakrishnan V; Selassie A; Gebregziabher M
    Stat Methods Med Res; 2017 Aug; 26(4):1802-1823. PubMed ID: 26031359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.