These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34248886)

  • 21. Stochastically modeling Listeria monocytogenes growth in farm tank milk.
    Albert I; Pouillot R; Denis JB
    Risk Anal; 2005 Oct; 25(5):1171-85. PubMed ID: 16297223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Critical comparison of statistical methods for quantifying variability and uncertainty of microbial responses from experimental data.
    Garre A; Pielaat A; Zwietering MH; den Besten HMW; Smid JH
    Int J Food Microbiol; 2022 Dec; 383():109935. PubMed ID: 36183424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of Bayesian modelling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon.
    Delignette-Muller ML; Cornu M; Pouillot R; Denis JB
    Int J Food Microbiol; 2006 Feb; 106(2):195-208. PubMed ID: 16216374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Food Microbiol; 2016 Dec; 60():49-53. PubMed ID: 27554145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing and assessing a density surface model in a Bayesian hierarchical framework with a focus on uncertainty: insights from simulations and an application to fin whales (
    Sigourney DB; Chavez-Rosales S; Conn PB; Garrison L; Josephson E; Palka D
    PeerJ; 2020; 8():e8226. PubMed ID: 32002319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI.
    While PT
    Magn Reson Med; 2017 Dec; 78(6):2373-2387. PubMed ID: 28370232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Bayesian generalized log-normal model to dynamically evaluate the distribution of pesticide residues in soil associated with population health risks.
    Li Z
    Environ Int; 2018 Dec; 121(Pt 1):620-634. PubMed ID: 30312965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Empirical Bayesian significance measure of neuronal spike response.
    Oba S; Nakae K; Ikegaya Y; Aki S; Yoshimoto J; Ishii S
    BMC Neurosci; 2016 May; 17(1):27. PubMed ID: 27209433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts.
    Majumdar A; Gries C
    Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction uncertainty assessment of chromatography models using Bayesian inference.
    Briskot T; Stückler F; Wittkopp F; Williams C; Yang J; Konrad S; Doninger K; Griesbach J; Bennecke M; Hepbildikler S; Hubbuch J
    J Chromatogr A; 2019 Feb; 1587():101-110. PubMed ID: 30579636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian approach in estimating flood waste generation: A case study in South Korea.
    Park MH; Ju M; Kim JY
    J Environ Manage; 2020 Jul; 265():110552. PubMed ID: 32292174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using a reliability process to reduce uncertainty in predicting crashes at unsignalized intersections.
    Haleem K; Abdel-Aty M; Mackie K
    Accid Anal Prev; 2010 Mar; 42(2):654-66. PubMed ID: 20159091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Technical note: Bayesian calibration of dynamic ruminant nutrition models.
    Reed KF; Arhonditsis GB; France J; Kebreab E
    J Dairy Sci; 2016 Aug; 99(8):6362-6370. PubMed ID: 27179874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of growth rate from kinetic model to calculate stochastic growth of a bacteria population at low contamination level.
    Koyama K; Hiura S; Abe H; Koseki S
    J Theor Biol; 2021 Sep; 525():110758. PubMed ID: 33984354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of the probability of bacterial population survival: Development of a probability model to describe the variability in time to inactivation of Salmonella enterica.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Food Microbiol; 2017 Dec; 68():121-128. PubMed ID: 28800819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian calibration of hyperelastic constitutive models of soft tissue.
    Madireddy S; Sista B; Vemaganti K
    J Mech Behav Biomed Mater; 2016 Jun; 59():108-127. PubMed ID: 26751706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling stimulus-dependent variability improves decoding of population neural responses.
    Ghanbari A; Lee CM; Read HL; Stevenson IH
    J Neural Eng; 2019 Oct; 16(6):066018. PubMed ID: 31404915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bayesian inference for generalized linear models for spiking neurons.
    Gerwinn S; Macke JH; Bethge M
    Front Comput Neurosci; 2010; 4():12. PubMed ID: 20577627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Addressing uncertainty in fecal indicator bacteria dark inactivation rates.
    Gronewold AD; Myers L; Swall JL; Noble RT
    Water Res; 2011 Jan; 45(2):652-64. PubMed ID: 20843534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.