These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 34248952)

  • 1. The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection.
    Korshoj LE; Shi W; Duan B; Kielian T
    Front Immunol; 2021; 12():670931. PubMed ID: 34248952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection.
    DeMarino C; Schwab A; Pleet M; Mathiesen A; Friedman J; El-Hage N; Kashanchi F
    J Neuroimmune Pharmacol; 2017 Mar; 12(1):31-50. PubMed ID: 27372507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunopathogenesis of Craniotomy Infection and Niche-Specific Immune Responses to Biofilm.
    de Morais SD; Kak G; Menousek JP; Kielian T
    Front Immunol; 2021; 12():625467. PubMed ID: 33708216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus.
    Glatthardt T; Campos JCM; Chamon RC; de Sá Coimbra TF; Rocha GA; de Melo MAF; Parente TE; Lobo LA; Antunes LCM; Dos Santos KRN; Ferreira RBR
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanobiotechnology-based drug delivery to the central nervous system.
    Jain KK
    Neurodegener Dis; 2007; 4(4):287-91. PubMed ID: 17627131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The blood-brain barrier and its role in immune privilege in the central nervous system.
    Pachter JS; de Vries HE; Fabry Z
    J Neuropathol Exp Neurol; 2003 Jun; 62(6):593-604. PubMed ID: 12834104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of microglial responses to Staphylococcus aureus: effects on cytokine, costimulatory molecule, and Toll-like receptor expression.
    Kielian T; Mayes P; Kielian M
    J Neuroimmunol; 2002 Sep; 130(1-2):86-99. PubMed ID: 12225891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System.
    Shahjin F; Chand S; Yelamanchili SV
    J Neuroimmune Pharmacol; 2020 Sep; 15(3):443-458. PubMed ID: 31485884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNS infection and immune privilege.
    Forrester JV; McMenamin PG; Dando SJ
    Nat Rev Neurosci; 2018 Nov; 19(11):655-671. PubMed ID: 30310148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders.
    Correia AC; Monteiro AR; Silva R; Moreira JN; Sousa Lobo JM; Silva AC
    Adv Drug Deliv Rev; 2022 Oct; 189():114485. PubMed ID: 35970274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Nano-based Drug Loading Systems in the Treatment of Neurological Infections: An Updated Review.
    Sadigh-Eteghad S; Shahi S; Mahmoudi J; Farjami A; Bazmani A; Naghili B; Dizaj SM; Salatin S
    Curr Pharm Des; 2022; 28(28):2330-2342. PubMed ID: 35909277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leukocyte-facilitated entry of intracellular pathogens into the central nervous system.
    Drevets DA; Leenen PJ
    Microbes Infect; 2000 Nov; 2(13):1609-18. PubMed ID: 11113380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Transmission routes of neuropathogenic pathogens-Possible mechanisms of neuroinvasion].
    Craemer EM
    Nervenarzt; 2023 Apr; 94(4):296-305. PubMed ID: 36690702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut reactions: How the blood-brain barrier connects the microbiome and the brain.
    Logsdon AF; Erickson MA; Rhea EM; Salameh TS; Banks WA
    Exp Biol Med (Maywood); 2018 Jan; 243(2):159-165. PubMed ID: 29169241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway.
    Riquelme SA; Wong Fok Lung T; Prince A
    Front Immunol; 2020; 11():385. PubMed ID: 32231665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staphylococcal Biofilms.
    Otto M
    Microbiol Spectr; 2018 Aug; 6(4):. PubMed ID: 30117414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment.
    Brady RA; O'May GA; Leid JG; Prior ML; Costerton JW; Shirtliff ME
    Infect Immun; 2011 Apr; 79(4):1797-803. PubMed ID: 21220484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics.
    Chen J; Zhou H; Huang J; Zhang R; Rao X
    J Adv Res; 2021 Jul; 31():165-175. PubMed ID: 34194840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk Between
    Horn CM; Kielian T
    Front Immunol; 2020; 11():621750. PubMed ID: 33613555
    [No Abstract]   [Full Text] [Related]  

  • 20. The blood-central nervous system barriers actively control immune cell entry into the central nervous system.
    Engelhardt B
    Curr Pharm Des; 2008; 14(16):1555-65. PubMed ID: 18673197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.