These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 34249602)

  • 1. Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media.
    Albalawi Y; Buckley J; Nikolov NS
    J Big Data; 2021; 8(1):95. PubMed ID: 34249602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pretrained Transformer Language Models Versus Pretrained Word Embeddings for the Detection of Accurate Health Information on Arabic Social Media: Comparative Study.
    Albalawi Y; Nikolov NS; Buckley J
    JMIR Form Res; 2022 Jun; 6(6):e34834. PubMed ID: 35767322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification.
    Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M
    J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Word2vec convolutional neural networks for classification of news articles and tweets.
    Jang B; Kim I; Kim JW
    PLoS One; 2019; 14(8):e0220976. PubMed ID: 31437181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models.
    Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C
    J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient method for disaster tweets classification using gradient-based optimized convolutional neural networks with BERT embeddings.
    Dharrao D; Mr A; Mital R; Vengali A; Pangavhane M; Rajput S; Bongale AM
    MethodsX; 2024 Dec; 13():102843. PubMed ID: 39101121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach.
    Metzler H; Baginski H; Niederkrotenthaler T; Garcia D
    J Med Internet Res; 2022 Aug; 24(8):e34705. PubMed ID: 35976193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A clinical text classification paradigm using weak supervision and deep representation.
    Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning based sentiment analysis of public perception of working from home through tweets.
    Vohra A; Garg R
    J Intell Inf Syst; 2023; 60(1):255-274. PubMed ID: 36034686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting ICD multi-label classification of health records with contextual embeddings and label-granularity.
    Blanco A; Perez-de-Viñaspre O; Pérez A; Casillas A
    Comput Methods Programs Biomed; 2020 May; 188():105264. PubMed ID: 31851906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying health related occupations of Twitter users through word embedding and deep neural networks.
    Zainab K; Srivastava G; Mago V
    BMC Bioinformatics; 2022 Sep; 22(Suppl 10):630. PubMed ID: 36171569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.
    Cocos A; Fiks AG; Masino AJ
    J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeIDNER Model: A Neural Network Named Entity Recognition Model for Use in the De-identification of Clinical Notes.
    Syed M; Sexton K; Greer M; Syed S; VanScoy J; Kawsar F; Olson E; Patel K; Erwin J; Bhattacharyya S; Zozus M; Prior F
    Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap; 2022 Feb; 5():640-647. PubMed ID: 35386186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning meets ontologies: experiments to anchor the cardiovascular disease ontology in the biomedical literature.
    Arguello Casteleiro M; Demetriou G; Read W; Fernandez Prieto MJ; Maroto N; Maseda Fernandez D; Nenadic G; Klein J; Keane J; Stevens R
    J Biomed Semantics; 2018 Apr; 9(1):13. PubMed ID: 29650041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis on question classification task based on deep learning approaches.
    Zulqarnain M; Khalaf Zager Alsaedi A; Ghazali R; Ghouse MG; Sharif W; Aida Husaini N
    PeerJ Comput Sci; 2021; 7():e570. PubMed ID: 34435091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum computing and machine learning for Arabic language sentiment classification in social media.
    Omar A; Abd El-Hafeez T
    Sci Rep; 2023 Oct; 13(1):17305. PubMed ID: 37828056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Automated Toxicity Classification on Social Media Using LSTM and Word Embedding.
    Alsharef A; Aggarwal K; Sonia ; Koundal D; Alyami H; Ameyed D
    Comput Intell Neurosci; 2022; 2022():8467349. PubMed ID: 35211168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting cyberbullying using deep learning techniques: a pre-trained glove and focal loss technique.
    El Koshiry AM; Eliwa EHI; Abd El-Hafeez T; Khairy M
    PeerJ Comput Sci; 2024; 10():e1961. PubMed ID: 38660150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Social Media Monitoring of the COVID-19 Pandemic and Influenza Epidemic With Adaptation for Informal Language in Arabic Twitter Data: Qualitative Study.
    Alsudias L; Rayson P
    JMIR Med Inform; 2021 Sep; 9(9):e27670. PubMed ID: 34346892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.