These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 342498)

  • 1. 2-deoxygalactose, a specific substrate of the Salmonella typhiimurium galactose permease: its use for the isolation of galP mutants.
    Nagelkerke F; Postma PW
    J Bacteriol; 1978 Feb; 133(2):607-13. PubMed ID: 342498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactose transport in Salmonella typhimurium.
    Postma PW
    J Bacteriol; 1977 Feb; 129(2):630-9. PubMed ID: 190207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of methyl beta-galactoside permease activity in pts and crr mutants of Salmonella typhimurium.
    Postma PW; Schuitema A; Kwa C
    Mol Gen Genet; 1981; 181(4):448-53. PubMed ID: 6267419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Deoxy-D-galactose, a substrate for the galactose-transport system of Escherichia coli.
    Henderson PJ; Giddens RA
    Biochem J; 1977 Oct; 168(1):15-22. PubMed ID: 23115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of constitutive galactose permease mutants in Salmonella typhimurium.
    Saier MH; Bromberg FG; Roseman S
    J Bacteriol; 1973 Jan; 113(1):512-4. PubMed ID: 4569699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proline transport in Salmonella typhimurium: putP permease mutants with altered substrate specificity.
    Dila DK; Maloy SR
    J Bacteriol; 1986 Nov; 168(2):590-4. PubMed ID: 3536852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles.
    Misko TP; Mitchell WJ; Meadow ND; Roseman S
    J Biol Chem; 1987 Nov; 262(33):16261-6. PubMed ID: 3316216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium.
    Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD
    J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium.
    Elliott T
    J Bacteriol; 1993 Jan; 175(2):325-31. PubMed ID: 8380400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton movements coupled to sugar transport via the galactose transport system in Salmonella typhimurium.
    Thienen GM; Postma PW; Dam KV
    Eur J Biochem; 1977 Mar; 73(2):521-7. PubMed ID: 14832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose).
    Mitchell WJ; Misko TP; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14553-64. PubMed ID: 6815195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12.
    Robbins AR; Rotman B
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):423-7. PubMed ID: 1091926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions.
    Ruijter GJ; Postma PW; van Dam K
    J Bacteriol; 1990 Sep; 172(9):4783-9. PubMed ID: 2203730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of a glucose permease of Escherichia coli.
    ROGERS D; YU SH
    J Bacteriol; 1962 Nov; 84(5):877-81. PubMed ID: 13982383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. II. Second site revertants of the thiodigalactoside-dependent proton leak by the Val177/Asn319 permease.
    Eelkema JA; O'Donnell MA; Brooker RJ
    J Biol Chem; 1991 Mar; 266(7):4139-44. PubMed ID: 1999408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of lactose permease mutants which recognize arabinose.
    Goswitz VC; Brooker RJ
    Membr Biochem; 1993; 10(1):61-70. PubMed ID: 8510563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose.
    Franco PJ; Eelkema JA; Brooker RJ
    J Biol Chem; 1989 Sep; 264(27):15988-92. PubMed ID: 2674122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolvant of Escherichia coli that employs the L-fucose pathway also for growth on L-galactose and D-arabinose.
    Zhu Y; Lin EC
    J Mol Evol; 1986; 23(3):259-66. PubMed ID: 3100814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galactose transport systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The L-arabinose permease system in Escherichia coli B/r.
    Novotny CP; Englesberg E
    Biochim Biophys Acta; 1966 Mar; 117(1):217-30. PubMed ID: 5330661
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.