These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 342498)
21. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. Csonka LN J Bacteriol; 1982 Sep; 151(3):1433-43. PubMed ID: 7050090 [TBL] [Abstract][Full Text] [Related]
22. Transport of trehalose in Salmonella typhimurium. Postma PW; Keizer HG; Koolwijk P J Bacteriol; 1986 Dec; 168(3):1107-11. PubMed ID: 3023298 [TBL] [Abstract][Full Text] [Related]
23. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569 [TBL] [Abstract][Full Text] [Related]
24. A transport system for phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate in Salmonella typhimurium. Saier MH; Wentzel DL; Feucht BU; Judice JJ J Biol Chem; 1975 Jul; 250(13):5089-96. PubMed ID: 238977 [TBL] [Abstract][Full Text] [Related]
25. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. Goodell EW; Higgins CF J Bacteriol; 1987 Aug; 169(8):3861-5. PubMed ID: 3301822 [TBL] [Abstract][Full Text] [Related]
26. Energetics of galactose, proline, and glutamine transport in a cytochrome-deficient mutant of Salmonella typhimurium. Singh AP; Bragg PD J Supramol Struct; 1977; 6(3):389-98. PubMed ID: 22779 [TBL] [Abstract][Full Text] [Related]
27. Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions. Cairney J; Higgins CF; Booth IR J Bacteriol; 1984 Oct; 160(1):22-7. PubMed ID: 6090414 [TBL] [Abstract][Full Text] [Related]
28. A Mannose Family Phosphotransferase System Permease and Associated Enzymes Are Required for Utilization of Fructoselysine and Glucoselysine in Salmonella enterica Serovar Typhimurium. Miller KA; Phillips RS; Kilgore PB; Smith GL; Hoover TR J Bacteriol; 2015 Sep; 197(17):2831-9. PubMed ID: 26100043 [TBL] [Abstract][Full Text] [Related]
29. Transport systems for galactose and galactosides in Escherichia coli. I. Genetic determination and regulation of the methyl-galactoside permease. Ganesan AK; Rotman B J Mol Biol; 1966 Mar; 16(1):42-50. PubMed ID: 5331243 [No Abstract] [Full Text] [Related]
30. Thermodynamics of binding of D-galactose and deoxy derivatives thereof to the L-arabinose-binding protein. Daranas AH; Shimizu H; Homans SW J Am Chem Soc; 2004 Sep; 126(38):11870-6. PubMed ID: 15382922 [TBL] [Abstract][Full Text] [Related]
31. A nontransportable substrate for lactose permease. Seibert C; Dörner W; Jähnig F Biochemistry; 1995 Jun; 34(24):7819-24. PubMed ID: 7794892 [TBL] [Abstract][Full Text] [Related]
32. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation. Postma PW; Stock JB J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384 [TBL] [Abstract][Full Text] [Related]
33. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related]
34. Ligand recognition by the lactose permease of Escherichia coli: specificity and affinity are defined by distinct structural elements of galactopyranosides. Sahin-Tóth M; Akhoon KM; Runner J; Kaback HR Biochemistry; 2000 May; 39(17):5097-103. PubMed ID: 10819976 [TBL] [Abstract][Full Text] [Related]
35. Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium. Gibson MM; Price M; Higgins CF J Bacteriol; 1984 Oct; 160(1):122-30. PubMed ID: 6090406 [TBL] [Abstract][Full Text] [Related]
36. Illicit transport: the oligopeptide permease. Ames BN; Ames GF; Young JD; Tsuchiya D; Lecocq J Proc Natl Acad Sci U S A; 1973 Feb; 70(2):456-8. PubMed ID: 4568730 [TBL] [Abstract][Full Text] [Related]
37. Cloning and sequencing of the melB gene encoding the melibiose permease of Salmonella typhimurium LT2. Mizushima K; Awakihara S; Kuroda M; Ishikawa T; Tsuda M; Tsuchiya T Mol Gen Genet; 1992 Jul; 234(1):74-80. PubMed ID: 1495487 [TBL] [Abstract][Full Text] [Related]
38. Dissecting the molecular mechanism of ion-solute cotransport: substrate specificity mutations in the putP gene affect the kinetics of proline transport. Myers RS; Townsend D; Maloy S J Membr Biol; 1991 May; 121(3):201-14. PubMed ID: 1865487 [TBL] [Abstract][Full Text] [Related]
39. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
40. Histidine and aromatic permeases of Salmonella typhimurim. Ames GF; Roth JR J Bacteriol; 1968 Nov; 96(5):1742-9. PubMed ID: 4882022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]