BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34249891)

  • 1. Insulin-Like Growth Factor-1: A Promising Therapeutic Target for Peripheral Nerve Injury.
    Slavin BR; Sarhane KA; von Guionneau N; Hanwright PJ; Qiu C; Mao HQ; Höke A; Tuffaha SH
    Front Bioeng Biotechnol; 2021; 9():695850. PubMed ID: 34249891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury.
    Zhu H; Xue C; Yao M; Wang H; Zhang P; Qian T; Zhou S; Li S; Yu B; Wang Y; Gu X
    Cell Death Dis; 2018 Jun; 9(7):720. PubMed ID: 29915198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic augmentation of the growth hormone axis to improve outcomes following peripheral nerve injury.
    Tuffaha SH; Singh P; Budihardjo JD; Means KR; Higgins JP; Shores JT; Salvatori R; Höke A; Lee WP; Brandacher G
    Expert Opin Ther Targets; 2016 Oct; 20(10):1259-65. PubMed ID: 27192539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration.
    De la Rosa MB; Kozik EM; Sakaguchi DS
    Adv Exp Med Biol; 2018; 1119():41-71. PubMed ID: 30151648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of insulin-like growth factor-I and its receptor and binding proteins in transected nerves and cultured Schwann cells.
    Cheng HL; Randolph A; Yee D; Delafontaine P; Tennekoon G; Feldman EL
    J Neurochem; 1996 Feb; 66(2):525-36. PubMed ID: 8592122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration.
    Han SB; Kim H; Lee H; Grove M; Smith GM; Son YJ
    J Neurosci; 2017 Nov; 37(45):10955-10970. PubMed ID: 28982707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational bioengineering strategies for peripheral nerve regeneration: opportunities, challenges, and novel concepts.
    Sarhane KA; Qiu C; Harris TGW; Hanwright PJ; Mao HQ; Tuffaha SH
    Neural Regen Res; 2023 Jun; 18(6):1229-1234. PubMed ID: 36453398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between Schwann cells and other cells during repair of peripheral nerve injury.
    Qu WR; Zhu Z; Liu J; Song DB; Tian H; Chen BP; Li R; Deng LX
    Neural Regen Res; 2021 Jan; 16(1):93-98. PubMed ID: 32788452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects.
    Hood B; Levene HB; Levi AD
    Neurosurg Focus; 2009 Feb; 26(2):E4. PubMed ID: 19435444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gingiva-Derived Mesenchymal Stem Cell-Extracellular Vesicles Activate Schwann Cell Repair Phenotype and Promote Nerve Regeneration.
    Mao Q; Nguyen PD; Shanti RM; Shi S; Shakoori P; Zhang Q; Le AD
    Tissue Eng Part A; 2019 Jun; 25(11-12):887-900. PubMed ID: 30311853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid axoplasmic transport of insulin-like growth factor I in the sciatic nerve of adult rats.
    Hansson HA; Rozell B; Skottner A
    Cell Tissue Res; 1987 Feb; 247(2):241-7. PubMed ID: 2434233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury.
    Nagata K; Itaka K; Baba M; Uchida S; Ishii T; Kataoka K
    J Control Release; 2014 Jun; 183():27-34. PubMed ID: 24657809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proliferative effects of melatonin on Schwann cells: implication for nerve regeneration following peripheral nerve injury.
    Chang HM; Liu CH; Hsu WM; Chen LY; Wang HP; Wu TH; Chen KY; Ho WH; Liao WC
    J Pineal Res; 2014 Apr; 56(3):322-32. PubMed ID: 24499296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTORC1 Is Transiently Reactivated in Injured Nerves to Promote c-Jun Elevation and Schwann Cell Dedifferentiation.
    Norrmén C; Figlia G; Pfistner P; Pereira JA; Bachofner S; Suter U
    J Neurosci; 2018 May; 38(20):4811-4828. PubMed ID: 29695414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic and Local FK506 (Tacrolimus) and its Application in Peripheral Nerve Surgery.
    Zuo KJ; Saffari TM; Chan K; Shin AY; Borschel GH
    J Hand Surg Am; 2020 Aug; 45(8):759-765. PubMed ID: 32359866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibroblast growth factor 21 facilitates peripheral nerve regeneration through suppressing oxidative damage and autophagic cell death.
    Lu Y; Li R; Zhu J; Wu Y; Li D; Dong L; Li Y; Wen X; Yu F; Zhang H; Ni X; Du S; Li X; Xiao J; Wang J
    J Cell Mol Med; 2019 Jan; 23(1):497-511. PubMed ID: 30450828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical considerations concerning the use of stem cells for peripheral nerve repair.
    Walsh S; Midha R
    Neurosurg Focus; 2009 Feb; 26(2):E2. PubMed ID: 19435443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration.
    Li R; Li D; Wu C; Ye L; Wu Y; Yuan Y; Yang S; Xie L; Mao Y; Jiang T; Li Y; Wang J; Zhang H; Li X; Xiao J
    Theranostics; 2020; 10(4):1649-1677. PubMed ID: 32042328
    [No Abstract]   [Full Text] [Related]  

  • 19. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype.
    Weiss T; Taschner-Mandl S; Bileck A; Slany A; Kromp F; Rifatbegovic F; Frech C; Windhager R; Kitzinger H; Tzou CH; Ambros PF; Gerner C; Ambros IM
    Glia; 2016 Dec; 64(12):2133-2153. PubMed ID: 27545331
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.