These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34250344)

  • 1. Model for Gold Nanoparticle Synthesis: Effect of pH and Reaction Time.
    Yazdani S; Daneshkhah A; Diwate A; Patel H; Smith J; Reul O; Cheng R; Izadian A; Hajrasouliha AR
    ACS Omega; 2021 Jul; 6(26):16847-16853. PubMed ID: 34250344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slight pH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method.
    Contreras-Trigo B; Díaz-García V; Guzmán-Gutierrez E; Sanhueza I; Coelho P; Godoy SE; Torres S; Oyarzún P
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly (Vinyl Alcohol) Assisted Synthesis and Anti-Solvent Precipitation of Gold Nanoparticles.
    Liu Z; Lanier OL; Chauhan A
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis.
    Wuithschick M; Birnbaum A; Witte S; Sztucki M; Vainio U; Pinna N; Rademann K; Emmerling F; Kraehnert R; Polte J
    ACS Nano; 2015 Jul; 9(7):7052-71. PubMed ID: 26147899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation.
    Polte J; Ahner TT; Delissen F; Sokolov S; Emmerling F; Thünemann AF; Kraehnert R
    J Am Chem Soc; 2010 Feb; 132(4):1296-301. PubMed ID: 20102229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Precision Gold Nanoparticles Using Turkevich Method.
    Dong J; Carpinone PL; Pyrgiotakis G; Demokritou P; Moudgil BM
    Kona; 2020 Jan; 37():224-232. PubMed ID: 32153313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.
    Tyagi H; Kushwaha A; Kumar A; Aslam M
    Nanoscale Res Lett; 2016 Dec; 11(1):362. PubMed ID: 27526178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turkevich method for gold nanoparticle synthesis revisited.
    Kimling J; Maier M; Okenve B; Kotaidis V; Ballot H; Plech A
    J Phys Chem B; 2006 Aug; 110(32):15700-7. PubMed ID: 16898714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction.
    Xia H; Bai S; Hartmann J; Wang D
    Langmuir; 2010 Mar; 26(5):3585-9. PubMed ID: 19877698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights of the reduction of gold salts in the Turkevich protocol.
    Gao Y; Torrente-Murciano L
    Nanoscale; 2020 Jan; 12(4):2740-2751. PubMed ID: 31950962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles.
    Fuentes-García JA; Santoyo-Salzar J; Rangel-Cortes E; Goya GF; Cardozo-Mata V; Pescador-Rojas JA
    Ultrason Sonochem; 2021 Jan; 70():105274. PubMed ID: 32771910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.
    Ding W; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chemphyschem; 2015 Feb; 16(2):447-54. PubMed ID: 25393528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles.
    Schulz F; Homolka T; Bastús NG; Puntes V; Weller H; Vossmeyer T
    Langmuir; 2014 Sep; 30(35):10779-84. PubMed ID: 25127436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions.
    Zhao L; Jiang D; Cai Y; Ji X; Xie R; Yang W
    Nanoscale; 2012 Aug; 4(16):5071-6. PubMed ID: 22776896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor.
    Baber R; Mazzei L; Thanh NTK; Gavriilidis A
    Nanoscale; 2017 Sep; 9(37):14149-14161. PubMed ID: 28905060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label.
    Jiang ZL; Sun SJ; Liang AH; Liu CJ
    Anal Chim Acta; 2006 Jul; 571(2):200-5. PubMed ID: 17723439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question.
    Shi L; Buhler E; Boué F; Carn F
    J Colloid Interface Sci; 2017 Apr; 492():191-198. PubMed ID: 28109820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.
    Bastús NG; Comenge J; Puntes V
    Langmuir; 2011 Sep; 27(17):11098-105. PubMed ID: 21728302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.