These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 342504)

  • 1. Chemotaxis of Salmonella typhimurium to amino acids and some sugars.
    Melton T; Hartman PE; Stratis JP; Lee TL; Davis AT
    J Bacteriol; 1978 Feb; 133(2):708-16. PubMed ID: 342504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Deoxy-3-fluoro-D-glucose-resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system.
    Melton T; Kundig W; Hartman PE; Meadow N
    J Bacteriol; 1976 Dec; 128(3):794-800. PubMed ID: 791932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of methyl beta-galactoside permease activity in pts and crr mutants of Salmonella typhimurium.
    Postma PW; Schuitema A; Kwa C
    Mol Gen Genet; 1981; 181(4):448-53. PubMed ID: 6267419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium.
    Postma PW
    J Bacteriol; 1981 Aug; 147(2):382-9. PubMed ID: 6267008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of trehalose in Salmonella typhimurium.
    Postma PW; Keizer HG; Koolwijk P
    J Bacteriol; 1986 Dec; 168(3):1107-11. PubMed ID: 3023298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation.
    Postma PW; Stock JB
    J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles.
    Misko TP; Mitchell WJ; Meadow ND; Roseman S
    J Biol Chem; 1987 Nov; 262(33):16261-6. PubMed ID: 3316216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose transport in Salmonella typhimurium.
    Postma PW
    J Bacteriol; 1977 Feb; 129(2):630-9. PubMed ID: 190207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system.
    Stock JB; Waygood EB; Meadow ND; Postma PW; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14543-52. PubMed ID: 6292227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium.
    Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH
    J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.
    Postma PW; Lengeler JW; Jacobson GR
    Microbiol Rev; 1993 Sep; 57(3):543-94. PubMed ID: 8246840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system.
    Cordaro C
    Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of crp mutations on adenosine 3',5'-monophosphate metabolism in Salmonella typhimurium.
    Rephaeli AW; Saier MH
    J Bacteriol; 1976 Jul; 127(1):120-7. PubMed ID: 179973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane receptors for aspartate and serine in bacterial chemotaxis.
    Clarke S; Koshland DE
    J Biol Chem; 1979 Oct; 254(19):9695-702. PubMed ID: 385590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of carbohydrate transport-deficient mutants of Salmonella typhimurium.
    Levinthal M; Simoni RD
    J Bacteriol; 1969 Jan; 97(1):250-5. PubMed ID: 4884816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium.
    Cordaro JC; Anderson RP; Grogan EW; Wenzel DJ; Engler M; Roseman S
    J Bacteriol; 1974 Oct; 120(1):245-52. PubMed ID: 4608878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli.
    Zukin RS; Strange PG; Heavey R; Koshland DE
    Biochemistry; 1977 Feb; 16(3):381-6. PubMed ID: 319823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the multifaceted roles of the phosphoenolpyruvate: Phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression.
    Lim S; Seo HS; Jeong J; Yoon H
    Microbiol Res; 2019; 223-225():63-71. PubMed ID: 31178053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribose and glucose-galactose receptors. Competitors in bacterial chemotaxis.
    Mowbray SL
    J Mol Biol; 1992 Sep; 227(2):418-40. PubMed ID: 1328650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.