These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 342504)
21. Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium. Cordaro JC; Roseman S J Bacteriol; 1972 Oct; 112(1):17-29. PubMed ID: 4562394 [TBL] [Abstract][Full Text] [Related]
22. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium. Meadow ND; Roseman S J Biol Chem; 1982 Dec; 257(23):14526-37. PubMed ID: 6754734 [TBL] [Abstract][Full Text] [Related]
23. Evidence against direct involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling. Tribhuwan RC; Johnson MS; Taylor BL J Bacteriol; 1986 Nov; 168(2):624-30. PubMed ID: 3023283 [TBL] [Abstract][Full Text] [Related]
24. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Roseman S J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370 [TBL] [Abstract][Full Text] [Related]
25. Cloning of mglB, the structural gene for the galactose-binding protein of Salmonella typhimurium and Escherichia coli. Müller N; Heine HG; Boos W Mol Gen Genet; 1982; 185(3):473-80. PubMed ID: 6285145 [TBL] [Abstract][Full Text] [Related]
26. Characterization of constitutive galactose permease mutants in Salmonella typhimurium. Saier MH; Bromberg FG; Roseman S J Bacteriol; 1973 Jan; 113(1):512-4. PubMed ID: 4569699 [TBL] [Abstract][Full Text] [Related]
27. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius. Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156 [TBL] [Abstract][Full Text] [Related]
28. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions. Ruijter GJ; Postma PW; van Dam K J Bacteriol; 1990 Sep; 172(9):4783-9. PubMed ID: 2203730 [TBL] [Abstract][Full Text] [Related]
29. Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium. Beneski DA; Misko TP; Roseman S J Biol Chem; 1982 Dec; 257(23):14565-75. PubMed ID: 6754736 [TBL] [Abstract][Full Text] [Related]
30. Sugar transport by the bacterial phosphotransferase system. In vivo regulation of lactose transport in Escherichia coli by IIIGlc, a protein of the phosphoenolpyruvate:glycose phosphotransferase system. Mitchell WJ; Saffen DW; Roseman S J Biol Chem; 1987 Nov; 262(33):16254-60. PubMed ID: 2824484 [TBL] [Abstract][Full Text] [Related]
31. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a phosphocarrier protein HPr from wild type and mutants of Salmonella typhimurium. Beneski DA; Nakazawa A; Weigel N; Hartman PE; Roseman S J Biol Chem; 1982 Dec; 257(23):14492-8. PubMed ID: 6754731 [TBL] [Abstract][Full Text] [Related]
32. The phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K 12. Lengeler J; Auburger AM; Mayer R; Pecher A Mol Gen Genet; 1981; 183(1):163-70. PubMed ID: 7035817 [TBL] [Abstract][Full Text] [Related]
33. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250 [TBL] [Abstract][Full Text] [Related]
34. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569 [TBL] [Abstract][Full Text] [Related]
35. Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. Garrity LF; Schiel SL; Merrill R; Reizer J; Saier MH; Ordal GW J Bacteriol; 1998 Sep; 180(17):4475-80. PubMed ID: 9721285 [TBL] [Abstract][Full Text] [Related]
36. Utilization of D-amino acids by dadR mutants of Salmonella typhimurium. Wild J; Filutowicz M; Kłopotowski T Arch Microbiol; 1978 Jul; 118(1):71-7. PubMed ID: 29590 [TBL] [Abstract][Full Text] [Related]
37. Energetics of glucose uptake in a Salmonella typhimurium mutant containing uncoupled enzyme IIGlc. Ruijter GJ; Postma PW; van Dam K Arch Microbiol; 1991; 155(3):234-7. PubMed ID: 2048933 [TBL] [Abstract][Full Text] [Related]
38. Escherichia coli mutants defective in chemotaxis toward specific chemicals. Hazelbauer GL; Mesibov RE; Adler J Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1300-7. PubMed ID: 4916925 [TBL] [Abstract][Full Text] [Related]
39. Separation of four components of the phosphoenolpyruvate: glucose phosphotransferase system in Vibrio parahaemolyticus. Kubota Y; Iuchi S; Fujisawa A; Tanaka S Microbiol Immunol; 1979; 23(3):131-46. PubMed ID: 225642 [TBL] [Abstract][Full Text] [Related]
40. Control of the receptor for galactose taxis in Salmonella typhimurium. Fahnestock M; Koshland DE J Bacteriol; 1979 Feb; 137(2):758-63. PubMed ID: 370099 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]