BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 342504)

  • 21. Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium.
    Cordaro JC; Roseman S
    J Bacteriol; 1972 Oct; 112(1):17-29. PubMed ID: 4562394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium.
    Meadow ND; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14526-37. PubMed ID: 6754734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence against direct involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling.
    Tribhuwan RC; Johnson MS; Taylor BL
    J Bacteriol; 1986 Nov; 168(2):624-30. PubMed ID: 3023283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning of mglB, the structural gene for the galactose-binding protein of Salmonella typhimurium and Escherichia coli.
    Müller N; Heine HG; Boos W
    Mol Gen Genet; 1982; 185(3):473-80. PubMed ID: 6285145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of constitutive galactose permease mutants in Salmonella typhimurium.
    Saier MH; Bromberg FG; Roseman S
    J Bacteriol; 1973 Jan; 113(1):512-4. PubMed ID: 4569699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius.
    Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C
    J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions.
    Ruijter GJ; Postma PW; van Dam K
    J Bacteriol; 1990 Sep; 172(9):4783-9. PubMed ID: 2203730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium.
    Beneski DA; Misko TP; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14565-75. PubMed ID: 6754736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sugar transport by the bacterial phosphotransferase system. In vivo regulation of lactose transport in Escherichia coli by IIIGlc, a protein of the phosphoenolpyruvate:glycose phosphotransferase system.
    Mitchell WJ; Saffen DW; Roseman S
    J Biol Chem; 1987 Nov; 262(33):16254-60. PubMed ID: 2824484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a phosphocarrier protein HPr from wild type and mutants of Salmonella typhimurium.
    Beneski DA; Nakazawa A; Weigel N; Hartman PE; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14492-8. PubMed ID: 6754731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K 12.
    Lengeler J; Auburger AM; Mayer R; Pecher A
    Mol Gen Genet; 1981; 183(1):163-70. PubMed ID: 7035817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU
    J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC.
    Garrity LF; Schiel SL; Merrill R; Reizer J; Saier MH; Ordal GW
    J Bacteriol; 1998 Sep; 180(17):4475-80. PubMed ID: 9721285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of D-amino acids by dadR mutants of Salmonella typhimurium.
    Wild J; Filutowicz M; Kłopotowski T
    Arch Microbiol; 1978 Jul; 118(1):71-7. PubMed ID: 29590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energetics of glucose uptake in a Salmonella typhimurium mutant containing uncoupled enzyme IIGlc.
    Ruijter GJ; Postma PW; van Dam K
    Arch Microbiol; 1991; 155(3):234-7. PubMed ID: 2048933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Escherichia coli mutants defective in chemotaxis toward specific chemicals.
    Hazelbauer GL; Mesibov RE; Adler J
    Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1300-7. PubMed ID: 4916925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separation of four components of the phosphoenolpyruvate: glucose phosphotransferase system in Vibrio parahaemolyticus.
    Kubota Y; Iuchi S; Fujisawa A; Tanaka S
    Microbiol Immunol; 1979; 23(3):131-46. PubMed ID: 225642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of the receptor for galactose taxis in Salmonella typhimurium.
    Fahnestock M; Koshland DE
    J Bacteriol; 1979 Feb; 137(2):758-63. PubMed ID: 370099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.