These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 34250453)

  • 1. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins.
    Raffetto JD; Khalil RA
    Vessel Plus; 2021; 5():. PubMed ID: 34250453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix Metalloproteinases in Remodeling of Lower Extremity Veins and Chronic Venous Disease.
    Chen Y; Peng W; Raffetto JD; Khalil RA
    Prog Mol Biol Transl Sci; 2017; 147():267-299. PubMed ID: 28413031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease.
    MacColl E; Khalil RA
    J Pharmacol Exp Ther; 2015 Dec; 355(3):410-28. PubMed ID: 26319699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins.
    Kucukguven A; Khalil RA
    Curr Drug Targets; 2013 Mar; 14(3):287-324. PubMed ID: 23316963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment.
    Raffetto JD; Ligi D; Maniscalco R; Khalil RA; Mannello F
    J Clin Med; 2020 Dec; 10(1):. PubMed ID: 33374372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation.
    Raffetto JD; Khalil RA
    Curr Vasc Pharmacol; 2008 Jul; 6(3):158-72. PubMed ID: 18673156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged increases in vein wall tension increase matrix metalloproteinases and decrease constriction in rat vena cava: Potential implications in varicose veins.
    Raffetto JD; Qiao X; Koledova VV; Khalil RA
    J Vasc Surg; 2008 Aug; 48(2):447-56. PubMed ID: 18502086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of varicose vein formation: valve dysfunction and wall dilation.
    Raffetto JD; Khalil RA
    Phlebology; 2008; 23(2):85-98. PubMed ID: 18453484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endovascular laser therapy for varicose veins: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(6):1-92. PubMed ID: 23074409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors Influencing Venous Remodeling in the Development of Varicose Veins of the Lower Limbs.
    Gwozdzinski L; Pieniazek A; Gwozdzinski K
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic venous disease and the leukocyte-endothelium interaction: from symptoms to ulceration.
    Nicolaides AN
    Angiology; 2005; 56 Suppl 1():S11-9. PubMed ID: 16193221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis of varicose veins and implications for clinical management.
    Naoum JJ; Hunter GC
    Vascular; 2007; 15(5):242-9. PubMed ID: 17976322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulodexide Improves Contraction and Decreases Matrix Metalloproteinase-2 and -9 in Veins Under Prolonged Stretch.
    Raffetto JD; Yu W; Wang X; Calanni F; Mattana P; Khalil RA
    J Cardiovasc Pharmacol; 2020 Mar; 75(3):211-221. PubMed ID: 31738197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic venous disease - Part II: Proteolytic biomarkers in wound healing.
    Ligi D; Mosti G; Croce L; Raffetto JD; Mannello F
    Biochim Biophys Acta; 2016 Oct; 1862(10):1900-8. PubMed ID: 27460704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenesis of primary varicose veins.
    Lim CS; Davies AH
    Br J Surg; 2009 Nov; 96(11):1231-42. PubMed ID: 19847861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated c-fos expression is correlated with phenotypic switching of human vascular smooth muscle cells derived from lower limb venous varicosities.
    Guo Z; Luo C; Zhu T; Li L; Zhang W
    J Vasc Surg Venous Lymphat Disord; 2021 Jan; 9(1):242-251. PubMed ID: 32360331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular mechanisms in varicose veins development.
    Segiet OA; Brzozowa-Zasada M; Piecuch A; Dudek D; Reichman-Warmusz E; Wojnicz R
    Ann Vasc Surg; 2015 Feb; 29(2):377-84. PubMed ID: 25449990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk Factors for Bleeding Varicose Veins in Patients with Chronic Venous Disease.
    Costa D; Ielapi N; Minici R; Peluso A; Bracale UM; Andreucci M; Serra R
    Medicina (Kaunas); 2023 May; 59(6):. PubMed ID: 37374238
    [No Abstract]   [Full Text] [Related]  

  • 19. Progression of varicose veins and chronic venous insufficiency in the general population in the Edinburgh Vein Study.
    Lee AJ; Robertson LA; Boghossian SM; Allan PL; Ruckley CV; Fowkes FG; Evans CJ
    J Vasc Surg Venous Lymphat Disord; 2015 Jan; 3(1):18-26. PubMed ID: 26993676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease.
    Raffetto JD; Khalil RA
    Biochem Pharmacol; 2008 Jan; 75(2):346-59. PubMed ID: 17678629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.