These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34250528)

  • 1. Multiple exciton generation in isolated and interacting silicon nanocrystals.
    Marri I; Ossicini S
    Nanoscale; 2021 Jul; 13(28):12119-12142. PubMed ID: 34250528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier multiplication in silicon nanocrystals: ab initio results.
    Marri I; Govoni M; Ossicini S
    Beilstein J Nanotechnol; 2015; 6():343-52. PubMed ID: 25821673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple exciton generation in colloidal silicon nanocrystals.
    Beard MC; Knutsen KP; Yu P; Luther JM; Song Q; Metzger WK; Ellingson RJ; Nozik AJ
    Nano Lett; 2007 Aug; 7(8):2506-12. PubMed ID: 17645368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: the role of competing energy-loss processes.
    Stewart JT; Padilha LA; Qazilbash MM; Pietryga JM; Midgett AG; Luther JM; Beard MC; Nozik AJ; Klimov VI
    Nano Lett; 2012 Feb; 12(2):622-8. PubMed ID: 22148950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red-shifted carrier multiplication energy threshold and exciton recycling mechanisms in strongly interacting silicon nanocrystals.
    Marri I; Govoni M; Ossicini S
    J Am Chem Soc; 2014 Sep; 136(38):13257-66. PubMed ID: 25092549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Exciton Generation in Colloidal Nanocrystals.
    Smith C; Binks D
    Nanomaterials (Basel); 2013 Dec; 4(1):19-45. PubMed ID: 28348283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of multiexciton generation in colloidal nanostructures.
    Shabaev A; Hellberg CS; Efros AL
    Acc Chem Res; 2013 Jun; 46(6):1242-51. PubMed ID: 23461547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscience and nanostructures for photovoltaics and solar fuels.
    Nozik AJ
    Nano Lett; 2010 Aug; 10(8):2735-41. PubMed ID: 20597472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.
    Cunningham PD; Boercker JE; Foos EE; Lumb MP; Smith AR; Tischler JG; Melinger JS
    Nano Lett; 2011 Aug; 11(8):3476-81. PubMed ID: 21766838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured Perovskite Solar Cells.
    McDonald C; Ni C; Maguire P; Connor P; Irvine JTS; Mariotti D; Svrcek V
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New aspects of carrier multiplication in semiconductor nanocrystals.
    McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI
    Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers.
    Schaller RD; Sykora M; Pietryga JM; Klimov VI
    Nano Lett; 2006 Mar; 6(3):424-9. PubMed ID: 16522035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric Optical Transitions Determine the Onset of Carrier Multiplication in Lead Chalcogenide Quantum Confined and Bulk Crystals.
    Spoor FCM; Grimaldi G; Delerue C; Evers WH; Crisp RW; Geiregat P; Hens Z; Houtepen AJ; Siebbeles LDA
    ACS Nano; 2018 May; 12(5):4796-4802. PubMed ID: 29664600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient carrier multiplication in PbS nanosheets.
    Aerts M; Bielewicz T; Klinke C; Grozema FC; Houtepen AJ; Schins JM; Siebbeles LD
    Nat Commun; 2014 Apr; 5():3789. PubMed ID: 24781188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals.
    Li M; Begum R; Fu J; Xu Q; Koh TM; Veldhuis SA; Grätzel M; Mathews N; Mhaisalkar S; Sum TC
    Nat Commun; 2018 Oct; 9(1):4197. PubMed ID: 30305633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.