These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34250668)

  • 21. Cost-effective genomic prediction of critical economic traits in sturgeons through low-coverage sequencing.
    Song H; Dong T; Wang W; Jiang B; Yan X; Geng C; Bai S; Xu S; Hu H
    Genomics; 2024 Jul; 116(4):110874. PubMed ID: 38839024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotype-free estimation of allele frequencies reduces bias and improves demographic inference from RADSeq data.
    Warmuth VM; Ellegren H
    Mol Ecol Resour; 2019 May; 19(3):586-596. PubMed ID: 30633448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping.
    Gautier M; Foucaud J; Gharbi K; Cézard T; Galan M; Loiseau A; Thomson M; Pudlo P; Kerdelhué C; Estoup A
    Mol Ecol; 2013 Jul; 22(14):3766-79. PubMed ID: 23730833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity to sequencing depth in single-cell cancer genomics.
    Alves JM; Posada D
    Genome Med; 2018 Apr; 10(1):29. PubMed ID: 29661213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmarking the performance of Pool-seq SNP callers using simulated and real sequencing data.
    Guirao-Rico S; González J
    Mol Ecol Resour; 2021 May; 21(4):1216-1229. PubMed ID: 33534960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allele frequency-free inference of close familial relationships from genotypes or low-depth sequencing data.
    Waples RK; Albrechtsen A; Moltke I
    Mol Ecol; 2019 Jan; 28(1):35-48. PubMed ID: 30462358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating microhaplotype allele frequencies from low-coverage or pooled sequencing data.
    Delomas TA; Willis SC
    BMC Bioinformatics; 2023 Nov; 24(1):415. PubMed ID: 37923981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High imputation accuracy from informative low-to-medium density single nucleotide polymorphism genotypes is achievable in sheep1.
    O'Brien AC; Judge MM; Fair S; Berry DP
    J Anim Sci; 2019 Apr; 97(4):1550-1567. PubMed ID: 30722011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comprehensive Assessment of Genotype Imputation Performance.
    Shi S; Yuan N; Yang M; Du Z; Wang J; Sheng X; Wu J; Xiao J
    Hum Hered; 2018; 83(3):107-116. PubMed ID: 30669139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold.
    Menelaou A; Marchini J
    Bioinformatics; 2013 Jan; 29(1):84-91. PubMed ID: 23093610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extremely low-coverage whole genome sequencing in South Asians captures population genomics information.
    Rustagi N; Zhou A; Watkins WS; Gedvilaite E; Wang S; Ramesh N; Muzny D; Gibbs RA; Jorde LB; Yu F; Xing J
    BMC Genomics; 2017 May; 18(1):396. PubMed ID: 28532386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring Genetic Differentiation from Pool-seq Data.
    Hivert V; Leblois R; Petit EJ; Gautier M; Vitalis R
    Genetics; 2018 Sep; 210(1):315-330. PubMed ID: 30061425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of population genomic approaches for mapping colony-level traits.
    Inbar S; Cohen P; Yahav T; Privman E
    PLoS Comput Biol; 2020 Mar; 16(3):e1007653. PubMed ID: 32218566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards a Cost-Effective Implementation of Genomic Prediction Based on Low Coverage Whole Genome Sequencing in Dezhou Donkey.
    Zhao C; Teng J; Zhang X; Wang D; Zhang X; Li S; Jiang X; Li H; Ning C; Zhang Q
    Front Genet; 2021; 12():728764. PubMed ID: 34804115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput estimation of allele frequencies using combined pooled-population sequencing and haplotype-based data processing.
    Schneider M; Shrestha A; Ballvora A; Léon J
    Plant Methods; 2022 Mar; 18(1):34. PubMed ID: 35313910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions.
    Druet T; Macleod IM; Hayes BJ
    Heredity (Edinb); 2014 Jan; 112(1):39-47. PubMed ID: 23549338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pool-hmm: a Python program for estimating the allele frequency spectrum and detecting selective sweeps from next generation sequencing of pooled samples.
    Boitard S; Kofler R; Françoise P; Robelin D; Schlötterer C; Futschik A
    Mol Ecol Resour; 2013 Mar; 13(2):337-40. PubMed ID: 23311589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genotype Calling from Population-Genomic Sequencing Data.
    Maruki T; Lynch M
    G3 (Bethesda); 2017 May; 7(5):1393-1404. PubMed ID: 28108551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A setback into a success: What can batch effects tell us about best practices in genomics?
    Dallaire X; Mérot C
    Mol Ecol Resour; 2022 Jul; 22(5):1675-1677. PubMed ID: 35380179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.