These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34250775)

  • 1. Antibacterial spectrum of four compounds from yeasts in koumiss.
    Chen YJ; Du CG; Guo YQ; Zhao YF; Aorigele C; Wang CJ; Simujide H; Agima W; Zhang XY
    Pol J Vet Sci; 2021 Jun; 24(2):167-173. PubMed ID: 34250775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling of koumiss microbiota and organic acids and their effects on koumiss taste.
    Tang H; Ma H; Hou Q; Li W; Xu H; Liu W; Sun Z; Haobisi H; Menghe B
    BMC Microbiol; 2020 Apr; 20(1):85. PubMed ID: 32276583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and identification of wild yeast in Koumiss.
    Mu Z; Yang X; Yuan H
    Food Microbiol; 2012 Sep; 31(2):301-8. PubMed ID: 22608237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a broad spectrum bacteriocin produced by Lactobacillus plantarum MXG-68 from Inner Mongolia traditional fermented koumiss.
    Man LL; Xiang DJ
    Folia Microbiol (Praha); 2019 Nov; 64(6):821-834. PubMed ID: 30895557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China.
    Yi L; Dang Y; Wu J; Zhang L; Liu X; Liu B; Zhou Y; Lu X
    J Dairy Sci; 2016 Sep; 99(9):7002-7015. PubMed ID: 27423943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of bacterial and fungal community structures in traditional koumiss from Inner Mongolia.
    Guo L; Ya M; Guo YS; Xu WL; Li CD; Sun JP; Zhu JJ; Qian JP
    J Dairy Sci; 2019 Mar; 102(3):1972-1984. PubMed ID: 30639001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Identification and biodiversity of yeasts isolated from Koumiss in Xinjiang of China].
    Ni HJ; Bao QH; Sun TS; Chen X; Zhang HP
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):578-82. PubMed ID: 17944353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant, antibacterial and antigiardial activities of Walsura robusta Roxb.
    Voravuthikunchai SP; Kanchanapoom T; Sawangjaroen N; Hutadilok-Towatana N
    Nat Prod Res; 2010 May; 24(9):813-24. PubMed ID: 20461627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial activities of Ligaria cuneifolia and Jodina rhombifolia leaf extracts against phytopathogenic and clinical bacteria.
    Soberón JR; Sgariglia MA; Dip Maderuelo MR; Andina ML; Sampietro DA; Vattuone MA
    J Biosci Bioeng; 2014 Nov; 118(5):599-605. PubMed ID: 24894684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Killer toxins of certain yeast strains have potential growth inhibitory activity on gram-positive pathogenic bacteria.
    Izgü F; Altinbay D
    Microbios; 1997; 89(358):15-22. PubMed ID: 9218351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.
    Fischer CL; Drake DR; Dawson DV; Blanchette DR; Brogden KA; Wertz PW
    Antimicrob Agents Chemother; 2012 Mar; 56(3):1157-61. PubMed ID: 22155833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeastlike fungi.
    McCormack PJ; Wildman HG; Jeffries P
    Appl Environ Microbiol; 1994 Mar; 60(3):927-31. PubMed ID: 8161185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.
    Septama AW; Panichayupakaranant P
    Pharm Biol; 2015; 53(11):1608-13. PubMed ID: 25856717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae).
    Gehrke IT; Neto AT; Pedroso M; Mostardeiro CP; Da Cruz IB; Silva UF; Ilha V; Dalcol II; Morel AF
    J Ethnopharmacol; 2013 Jul; 148(2):486-91. PubMed ID: 23684720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative uptake of exogenous thiamine and subsequent metabolic footprint in Saccharomyces cerevisiae and Kluyveromyces marxianus under simulated oenological conditions.
    Labuschagne PWJ; Rollero S; Divol B
    Int J Food Microbiol; 2021 Sep; 354():109206. PubMed ID: 34088559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay.
    Teh CH; Nazni WA; Nurulhusna AH; Norazah A; Lee HL
    BMC Microbiol; 2017 Feb; 17(1):36. PubMed ID: 28209130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Kombucha Beverage from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum, with Antibacterial and Antioxidant Effects.
    Sknepnek A; Pantić M; Matijašević D; Miletić D; Lević S; Nedović V; Niksic M
    Int J Med Mushrooms; 2018; 20(3):243-258. PubMed ID: 29717669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts.
    Elisha IL; Botha FS; McGaw LJ; Eloff JN
    BMC Complement Altern Med; 2017 Feb; 17(1):133. PubMed ID: 28241818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria.
    Zhao L; Zhang H; Hao T; Li S
    Food Chem; 2015 Nov; 187():370-7. PubMed ID: 25977039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional ingredients and prevention of chronic diseases by fermented koumiss: a comprehensive review.
    Xue W; Yuan X; Ji Z; Li H; Yao Y
    Front Nutr; 2023; 10():1270920. PubMed ID: 37927510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.