BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 34250801)

  • 1. Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions.
    Ojeda-May P; Mushtaq AU; Rogne P; Verma A; Ovchinnikov V; Grundström C; Dulko-Smith B; Sauer UH; Wolf-Watz M; Nam K
    Biochemistry; 2021 Jul; 60(28):2246-2258. PubMed ID: 34250801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for ligand binding to an enzyme by a conformational selection pathway.
    Kovermann M; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6298-6303. PubMed ID: 28559350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase.
    Dulko-Smith B; Ojeda-May P; Ådén J; Wolf-Watz M; Nam K
    J Chem Inf Model; 2023 Mar; 63(5):1556-1569. PubMed ID: 36802243
    [No Abstract]   [Full Text] [Related]  

  • 4. Molecular dynamics studies on the conformational transitions of adenylate kinase: a computational evidence for the conformational selection mechanism.
    Ping J; Hao P; Li YX; Wang JF
    Biomed Res Int; 2013; 2013():628536. PubMed ID: 23936827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis.
    Henzler-Wildman KA; Lei M; Thai V; Kerns SJ; Karplus M; Kern D
    Nature; 2007 Dec; 450(7171):913-6. PubMed ID: 18026087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic motions along an enzymatic reaction trajectory.
    Henzler-Wildman KA; Thai V; Lei M; Ott M; Wolf-Watz M; Fenn T; Pozharski E; Wilson MA; Petsko GA; Karplus M; Hübner CG; Kern D
    Nature; 2007 Dec; 450(7171):838-44. PubMed ID: 18026086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field.
    Unan H; Yildirim A; Tekpinar M
    J Comput Aided Mol Des; 2015 Jul; 29(7):655-65. PubMed ID: 26009297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data.
    Temiz NA; Meirovitch E; Bahar I
    Proteins; 2004 Nov; 57(3):468-80. PubMed ID: 15382240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into Enzymatic Catalysis from Binding and Hydrolysis of Diadenosine Tetraphosphate by
    Tischlik S; Oelker M; Rogne P; Sauer-Eriksson AE; Drescher M; Wolf-Watz M
    Biochemistry; 2023 Aug; 62(15):2238-2243. PubMed ID: 37418448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Many local motions cooperate to produce the adenylate kinase conformational transition.
    Daily MD; Phillips GN; Cui Q
    J Mol Biol; 2010 Jul; 400(3):618-31. PubMed ID: 20471396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state.
    Kovermann M; Ådén J; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M
    Nat Commun; 2015 Jul; 6():7644. PubMed ID: 26138143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energy landscape of adenylate kinase during catalysis.
    Kerns SJ; Agafonov RV; Cho YJ; Pontiggia F; Otten R; Pachov DV; Kutter S; Phung LA; Murphy PN; Thai V; Alber T; Hagan MF; Kern D
    Nat Struct Mol Biol; 2015 Feb; 22(2):124-31. PubMed ID: 25580578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions.
    Aviram HY; Pirchi M; Mazal H; Barak Y; Riven I; Haran G
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3243-3248. PubMed ID: 29531052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations.
    Schrank TP; Wrabl JO; Hilser VJ
    Top Curr Chem; 2013; 337():95-121. PubMed ID: 23543318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase.
    Lu J; Scheerer D; Haran G; Li W; Wang W
    J Phys Chem B; 2022 Oct; 126(41):8188-8201. PubMed ID: 36222098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding.
    Müller CW; Schlauderer GJ; Reinstein J; Schulz GE
    Structure; 1996 Feb; 4(2):147-56. PubMed ID: 8805521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation.
    Tugarinov V; Shapiro YE; Liang Z; Freed JH; Meirovitch E
    J Mol Biol; 2002 Jan; 315(2):155-70. PubMed ID: 11779236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis.
    Bhabha G; Lee J; Ekiert DC; Gam J; Wilson IA; Dyson HJ; Benkovic SJ; Wright PE
    Science; 2011 Apr; 332(6026):234-8. PubMed ID: 21474759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of conformational ensembles in adenylate kinase.
    Wang Y; Makowski L
    Proteins; 2018 Mar; 86(3):332-343. PubMed ID: 29239025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.