These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34251173)

  • 1. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte
    Wu M; Gong DC; Yang Q; Zhang MQ; Mei YZ; Dai CC
    ACS Synth Biol; 2021 Aug; 10(8):2030-2039. PubMed ID: 34251173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in Escherichia coli.
    Pei J; Chen A; Dong P; Shi X; Zhao L; Cao F; Tang F
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):171-186. PubMed ID: 30617726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The disruption of the MAPKK gene triggering the synthesis of flavonoids in endophytic fungus Phomopsis liquidambaris.
    Yang Q; Wu M; Zhu YL; Yang YQ; Mei YZ; Dai CC
    Biotechnol Lett; 2021 Jan; 43(1):119-132. PubMed ID: 33128663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Biosynthesis of (2
    Gao S; Lyu Y; Zeng W; Du G; Zhou J; Chen J
    J Agric Food Chem; 2020 Jan; 68(4):1015-1021. PubMed ID: 31690080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in
    Wang R; Cress BF; Yang Z; Hordines JC; Zhao S; Jung GY; Wang Z; Koffas MAG
    ACS Synth Biol; 2019 Sep; 8(9):2121-2130. PubMed ID: 31433622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2
    Tong Y; Li N; Zhou S; Zhang L; Xu S; Zhou J
    ACS Synth Biol; 2024 May; 13(5):1454-1466. PubMed ID: 38662928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endophytic Fungus Drives Nodulation and N
    Xie XG; Zhang FM; Yang T; Chen Y; Li XG; Dai CC
    mBio; 2019 Jul; 10(4):. PubMed ID: 31311876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The construction of CRISPR-Cas9 system for endophytic Phomopsis liquidambaris and its PmkkA-deficient mutant revealing the effect on rice.
    Huang PW; Yang Q; Zhu YL; Zhou J; Sun K; Mei YZ; Dai CC
    Fungal Genet Biol; 2020 Mar; 136():103301. PubMed ID: 31765708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Optimization of an In Vitro Multienzyme Synthetic System for Production of Kaempferol from Naringenin.
    Zhang Z; He Y; Huang Y; Ding L; Chen L; Liu Y; Nie Y; Zhang X
    J Agric Food Chem; 2018 Aug; 66(31):8272-8279. PubMed ID: 30019587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli.
    Yang SM; Han SH; Kim BG; Ahn JH
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1311-8. PubMed ID: 24879482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of plant immunity in the interaction of roots with the endophytic fungus Phomopsis liquidambaris in response to external nitrogen conditions.
    Sun K; Tang MJ; Lu F; Peng DH; Xu FJ; Zhang W; Xie XG; Dai CC
    Environ Microbiol Rep; 2022 Oct; 14(5):742-754. PubMed ID: 35925011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol.
    Lyu X; Zhao G; Ng KR; Mark R; Chen WN
    J Agric Food Chem; 2019 May; 67(19):5596-5606. PubMed ID: 30957490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster.
    Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalist endophyte Phomopsis liquidambaris colonization of Oryza sativa L. promotes plant growth under nitrogen starvation.
    Zhou J; Huang PW; Li X; Vaistij FE; Dai CC
    Plant Mol Biol; 2022 Aug; 109(6):703-715. PubMed ID: 35522401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates.
    Wang HW; Ma CY; Xu FJ; Lu F; Zhang W; Dai CC
    Microbiol Res; 2021 Sep; 250():126765. PubMed ID: 34049186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol.
    Kim BG; Joe EJ; Ahn JH
    Biotechnol Lett; 2010 Apr; 32(4):579-84. PubMed ID: 20033832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2
    Zhang Q; Yu S; Lyu Y; Zeng W; Zhou J
    ACS Synth Biol; 2021 May; 10(5):1166-1175. PubMed ID: 33877810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preinoculation with Endophytic fungus Phomopsis liquidambaris reduced rice bakanae disease caused by Fusarium proliferatum via enhanced plant resistance.
    Zhu Q; Wu YB; Chen M; Lu F; Sun K; Tang MJ; Zhang W; Bu YQ; Dai CC
    J Appl Microbiol; 2022 Sep; 133(3):1566-1580. PubMed ID: 35686661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.