These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34251182)
1. Microbially Synthesized Polymeric Amyloid Fiber Promotes β-Nanocrystal Formation and Displays Gigapascal Tensile Strength. Li J; Zhu Y; Yu H; Dai B; Jun YS; Zhang F ACS Nano; 2021 Jul; 15(7):11843-11853. PubMed ID: 34251182 [TBL] [Abstract][Full Text] [Related]
2. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers. Saric M; Scheibel T Biomacromolecules; 2023 Apr; 24(4):1744-1750. PubMed ID: 36913547 [TBL] [Abstract][Full Text] [Related]
3. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. He W; Qian D; Wang Y; Zhang G; Cheng Y; Hu X; Wen K; Wang M; Liu Z; Zhou X; Zhu M Adv Mater; 2022 Jul; 34(27):e2201843. PubMed ID: 35509216 [TBL] [Abstract][Full Text] [Related]
5. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation. Cheng J; Hu CF; Gan CY; Xia XX; Qian ZG ACS Biomater Sci Eng; 2022 Aug; 8(8):3299-3309. PubMed ID: 35820196 [TBL] [Abstract][Full Text] [Related]
6. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process. Zhu H; Sun Y; Yi T; Wang S; Mi J; Meng Q Biochimie; 2020 Aug; 175():77-84. PubMed ID: 32417459 [TBL] [Abstract][Full Text] [Related]
7. Spider Silk Protein Forms Amyloid-Like Nanofibrils through a Non-Nucleation-Dependent Polymerization Mechanism. Qi X; Wang Y; Yu H; Liu R; Leppert A; Zheng Z; Zhong X; Jin Z; Wang H; Li X; Wang X; Landreh M; A Morozova-Roche L; Johansson J; Xiong S; Iashchishyn I; Chen G Small; 2023 Nov; 19(46):e2304031. PubMed ID: 37455347 [TBL] [Abstract][Full Text] [Related]
8. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s). Thamm C; Scheibel T Biomacromolecules; 2017 Apr; 18(4):1365-1372. PubMed ID: 28233980 [TBL] [Abstract][Full Text] [Related]
9. Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N- and C-terminal domains. Zhu H; Rising A; Johansson J; Zhang X; Lin Y; Zhang L; Yi T; Mi J; Meng Q Int J Biol Macromol; 2020 Jul; 154():765-772. PubMed ID: 32169447 [TBL] [Abstract][Full Text] [Related]
10. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. An B; Hinman MB; Holland GP; Yarger JL; Lewis RV Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576 [TBL] [Abstract][Full Text] [Related]
11. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Teulé F; Addison B; Cooper AR; Ayon J; Henning RW; Benmore CJ; Holland GP; Yarger JL; Lewis RV Biopolymers; 2012 Jun; 97(6):418-31. PubMed ID: 22012252 [TBL] [Abstract][Full Text] [Related]
12. Spidroin-mimetic Engineered Protein Fibers with High Toughness and Minimized Batch-to-batch Variations through β-sheets Co-assembly. Qin D; Wang M; Cheng W; Chen J; Wang F; Sun J; Ma C; Zhang Y; Zhang H; Li H; Liu K; Li J Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202400595. PubMed ID: 38321642 [TBL] [Abstract][Full Text] [Related]
13. Dry-Spinning of Artificial Spider Silk Ribbons From Regenerated Natural Spidroin in an Organic Medium. Wang MY; Zhang JP; Chen SL; Qi B; Yao XY; Zhang XH; Li YT; Yang ZH Macromol Rapid Commun; 2023 Jun; 44(12):e2300024. PubMed ID: 37078381 [TBL] [Abstract][Full Text] [Related]
14. Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation. Greco G; Francis J; Arndt T; Schmuck B; G Bäcklund F; Barth A; Johansson J; M Pugno N; Rising A Molecules; 2020 Jul; 25(14):. PubMed ID: 32708777 [TBL] [Abstract][Full Text] [Related]
15. Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. He H; Yang C; Wang F; Wei Z; Shen J; Chen D; Fan C; Zhang H; Liu K Angew Chem Int Ed Engl; 2020 Mar; 59(11):4344-4348. PubMed ID: 31873970 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials. Wen R; Wang K; Meng Q Acta Biomater; 2020 Oct; 115():210-219. PubMed ID: 32798722 [TBL] [Abstract][Full Text] [Related]
17. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk. Weatherbee-Martin N; Xu L; Hupe A; Kreplak L; Fudge DS; Liu XQ; Rainey JK Biomacromolecules; 2016 Aug; 17(8):2737-46. PubMed ID: 27387592 [TBL] [Abstract][Full Text] [Related]
18. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides. Zhang Y; Lu H; Zhang M; Hou Z; Li S; Wang H; Wu XE; Zhang Y ACS Nano; 2023 Mar; 17(6):5905-5912. PubMed ID: 36892421 [TBL] [Abstract][Full Text] [Related]
19. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity. Yazawa K; Sasaki U Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091 [TBL] [Abstract][Full Text] [Related]
20. Scalable Spider-Silk-Like Supertough Fibers using a Pseudoprotein Polymer. Gu L; Jiang Y; Hu J Adv Mater; 2019 Nov; 31(48):e1904311. PubMed ID: 31490597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]