BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34251194)

  • 1. Q-Force: Quantum Mechanically Augmented Molecular Force Fields.
    Sami S; Menger MFSJ; Faraji S; Broer R; Havenith RWA
    J Chem Theory Comput; 2021 Aug; 17(8):4946-4960. PubMed ID: 34251194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HessFit: A Toolkit to Derive Automated Force Fields from Quantum Mechanical Information.
    Falbo E; Lavecchia A
    J Chem Inf Model; 2024 Jun; ():. PubMed ID: 38897917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Parameterization of Quantum Mechanically Derived Force Fields for Soft Materials and Complex Fluids: Development and Validation.
    Vilhena JG; Greff da Silveira L; Livotto PR; Cacelli I; Prampolini G
    J Chem Theory Comput; 2021 Jul; 17(7):4449-4464. PubMed ID: 34185536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Quantum-Mechanically Derived Force-Fields through a Fragment-Based Approach: Balancing Specificity and Transferability in the Prediction of Self-Assembly in Soft Matter.
    Greff da Silveira L; Livotto PR; Padula D; Vilhena JG; Prampolini G
    J Chem Theory Comput; 2022 Nov; 18(11):6905-6919. PubMed ID: 36260420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations.
    Grimme S
    J Chem Theory Comput; 2014 Oct; 10(10):4497-514. PubMed ID: 26588146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex.
    Diez-Cabanes V; Prampolini G; Francés-Monerris A; Monari A; Pastore M
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32640764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of Quantum Mechanically Derived Force-Fields: Thermodynamic, Structural, and Vibrational Properties of Aromatic Heterocycles.
    Greff da Silveira L; Jacobs M; Prampolini G; Livotto PR; Cacelli I
    J Chem Theory Comput; 2018 Sep; 14(9):4884-4900. PubMed ID: 30040902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametrization of Force Field Bonded Terms under Structural Inconsistency.
    Croitoru A; Aleksandrov A
    J Chem Inf Model; 2022 Oct; 62(19):4771-4782. PubMed ID: 36112364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons.
    Prampolini G; Campetella M; De Mitri N; Livotto PR; Cacelli I
    J Chem Theory Comput; 2016 Nov; 12(11):5525-5540. PubMed ID: 27709949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON
    Huang L; Roux B
    J Chem Theory Comput; 2013 Aug; 9(8):. PubMed ID: 24223528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.
    Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):205-264. PubMed ID: 30506159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QUBEKit: Automating the Derivation of Force Field Parameters from Quantum Mechanics.
    Horton JT; Allen AEA; Dodda LS; Cole DJ
    J Chem Inf Model; 2019 Apr; 59(4):1366-1381. PubMed ID: 30742438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate non-bonded potentials based on periodic quantum mechanics calculations for use in molecular simulations of materials and systems.
    Naserifar S; Oppenheim JJ; Yang H; Zhou T; Zybin S; Rizk M; Goddard WA
    J Chem Phys; 2019 Oct; 151(15):154111. PubMed ID: 31640352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields.
    Sauceda HE; Gastegger M; Chmiela S; Müller KR; Tkatchenko A
    J Chem Phys; 2020 Sep; 153(12):124109. PubMed ID: 33003761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Order Ab Initio Valence Force Field with Chemical Pattern Based Parameter Assignment.
    Yang X; Liu C; Ren P
    J Comput Biophys Chem; 2022 Jun; 21(4):431-447. PubMed ID: 35784097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated parameterization of quantum-mechanically derived force-fields including explicit sigma holes: A pathway to energetic and structural features of halogen bonds in gas and condensed phase.
    Campetella M; De Mitri N; Prampolini G
    J Chem Phys; 2020 Jul; 153(4):044106. PubMed ID: 32752684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.