These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34251230)

  • 1. Condensation in the phase space and network topology during transition from chaos to order in turbulent thermoacoustic systems.
    Tandon S; Sujith RI
    Chaos; 2021 Apr; 31(4):043126. PubMed ID: 34251230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor.
    Unni VR; Krishnan A; Manikandan R; George NB; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Jun; 28(6):063125. PubMed ID: 29960406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural networks to predict the onset of oscillatory instabilities in turbulent systems.
    Ruiz EA; Unni VR; Pavithran I; Sujith RI; Saha A
    Chaos; 2021 Sep; 31(9):093131. PubMed ID: 34598450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability.
    Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI
    Chaos; 2024 May; 34(5):. PubMed ID: 38717395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos.
    Mondal S; Pawar SA; Sujith RI
    Chaos; 2017 Oct; 27(10):103119. PubMed ID: 29092455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Route to chaos for combustion instability in ducted laminar premixed flames.
    Kabiraj L; Saurabh A; Wahi P; Sujith RI
    Chaos; 2012 Jun; 22(2):023129. PubMed ID: 22757536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing multifractality of pressure fluctuations in thermoacoustic systems using fractional-order derivatives.
    Varghese AJ; Chechkin A; Metzler R; Sujith RI
    Chaos; 2021 Mar; 31(3):033108. PubMed ID: 33810715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators.
    Guan Y; Moon K; Kim KT; Li LKB
    Phys Rev E; 2021 Aug; 104(2-1):024216. PubMed ID: 34525572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing.
    Guan Y; Murugesan M; Li LKB
    Chaos; 2018 Sep; 28(9):093109. PubMed ID: 30278637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of degeneration process in combustion instability based on dynamical systems theory.
    Gotoda H; Okuno Y; Hayashi K; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052906. PubMed ID: 26651761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network analysis of chaotic systems through unstable periodic orbits.
    Kobayashi MU; Saiki Y
    Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bursting during intermittency route to thermoacoustic instability: Effects of slow-fast dynamics.
    Tandon S; Pawar SA; Banerjee S; Varghese AJ; Durairaj P; Sujith RI
    Chaos; 2020 Oct; 30(10):103112. PubMed ID: 33138448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The connections between the frustrated chaos and the intermittency chaos in small Hopfield networks.
    Bersini H; Sener P
    Neural Netw; 2002 Dec; 15(10):1197-204. PubMed ID: 12425438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor.
    Godavarthi V; Pawar SA; Unni VR; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Nov; 28(11):113111. PubMed ID: 30501211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.