These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34251230)

  • 21. Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory.
    Murayama S; Kinugawa H; Tokuda IT; Gotoda H
    Phys Rev E; 2018 Feb; 97(2-1):022223. PubMed ID: 29548163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode.
    Guan Y; Li LKB; Ahn B; Kim KT
    Chaos; 2019 May; 29(5):053124. PubMed ID: 31154771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators.
    Dutta AK; Ramachandran G; Chaudhuri S
    Phys Rev E; 2019 Mar; 99(3-1):032215. PubMed ID: 30999463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of extreme events in the bubbling onset of wave turbulence.
    Galuzio PP; Viana RL; Lopes SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):040901. PubMed ID: 24827176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attenuation of thermoacoustic combustion oscillations in a swirl-stabilized turbulent combustor.
    Kurosaka T; Masuda S; Gotoda H
    Chaos; 2021 Jul; 31(7):073121. PubMed ID: 34340326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method.
    Azimi S; Ashtari O; Schneider TM
    Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems.
    Dange S; Manoj K; Banerjee S; Pawar SA; Mondal S; Sujith RI
    Chaos; 2019 Sep; 29(9):093135. PubMed ID: 31575137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor.
    Hashimoto T; Shibuya H; Gotoda H; Ohmichi Y; Matsuyama S
    Phys Rev E; 2019 Mar; 99(3-1):032208. PubMed ID: 30999467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of self-excited thermoacoustic instability in a combustion system: Pseudo-periodic and high-dimensional nature.
    Okuno Y; Small M; Gotoda H
    Chaos; 2015 Apr; 25(4):043107. PubMed ID: 25933655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system.
    Unni VR; Gopalakrishnan EA; Syamkumar KS; Sujith RI; Surovyatkina E; Kurths J
    Chaos; 2019 Mar; 29(3):031102. PubMed ID: 30927835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unstable periodic orbits and noise in chaos computing.
    Kia B; Dari A; Ditto WL; Spano ML
    Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detecting deterministic nature of pressure measurements from a turbulent combustor.
    Tony J; Gopalakrishnan EA; Sreelekha E; Sujith RI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062902. PubMed ID: 26764769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamical-systems analysis and unstable periodic orbits in reacting flows behind symmetric bluff bodies.
    Hua JC; Gunaratne GH; Kostka S; Jiang N; Kiel BV; Gord JR; Roy S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033011. PubMed ID: 24125348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection and control of combustion instability based on the concept of dynamical system theory.
    Gotoda H; Shinoda Y; Kobayashi M; Okuno Y; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022910. PubMed ID: 25353548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attenuation behavior of thermoacoustic combustion instability analyzed by a complex-network- and synchronization-based approach.
    Murayama S; Gotoda H
    Phys Rev E; 2019 May; 99(5-1):052222. PubMed ID: 31212465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis.
    Qi G; Gou T; Hu J; Chen G
    Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early detection of thermoacoustic combustion oscillations using a methodology combining statistical complexity and machine learning.
    Hachijo T; Masuda S; Kurosaka T; Gotoda H
    Chaos; 2019 Oct; 29(10):103123. PubMed ID: 31675849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates.
    Franzosi R; Penna V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046227. PubMed ID: 12786480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preventing a global transition to thermoacoustic instability by targeting local dynamics.
    George NB; Raghunathan M; Unni VR; Sujith RI; Kurths J; Surovyatkina E
    Sci Rep; 2022 Jun; 12(1):9305. PubMed ID: 35661119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.