These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34251245)

  • 41. Prediction of robust chaos in micro and nanoresonators under two-frequency excitation.
    Gusso A; Dantas WG; Ujevic S
    Chaos; 2019 Mar; 29(3):033112. PubMed ID: 30927846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A chaos to chaos control approach for controlling the chaotic dynamical systems using Hamilton energy feedback and fuzzy-logic system.
    Reza Ahrabi A; Kobravi HR
    Chaos; 2019 Jul; 29(7):073113. PubMed ID: 31370410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards Embedded Computation with Building Materials.
    Przyczyna D; Suchecki M; Adamatzky A; Szaciłowski K
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamical Phase Transitions in Quantum Reservoir Computing.
    Martínez-Peña R; Giorgi GL; Nokkala J; Soriano MC; Zambrini R
    Phys Rev Lett; 2021 Sep; 127(10):100502. PubMed ID: 34533342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancing the Recognition Task Performance of MEMS Resonator-Based Reservoir Computing System via Nonlinearity Tuning.
    Sun J; Yang W; Zheng T; Xiong X; Guo X; Zou X
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying the computational capability of a nanomagnetic reservoir computing platform with emergent magnetisation dynamics.
    Vidamour IT; Ellis MOA; Griffin D; Venkat G; Swindells C; Dawidek RWS; Broomhall TJ; Steinke NJ; Cooper JFK; Maccherozzi F; Dhesi SS; Stepney S; Vasilaki E; Allwood DA; Hayward TJ
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35940063
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps.
    Inoue K
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chaos in high-dimensional dissipative dynamical systems.
    Ispolatov I; Madhok V; Allende S; Doebeli M
    Sci Rep; 2015 Jul; 5():12506. PubMed ID: 26224119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Information Processing Capacity of a Single-Node Reservoir Computer: An Experimental Evaluation.
    Vettelschoss B; Rohm A; Soriano MC
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; 33(6):2714-2725. PubMed ID: 34662281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Collective dynamics of rate neurons for supervised learning in a reservoir computing system.
    Maslennikov OV; Nekorkin VI
    Chaos; 2019 Oct; 29(10):103126. PubMed ID: 31675797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generalized Lyapunov exponent as a unified characterization of dynamical instabilities.
    Akimoto T; Nakagawa M; Shinkai S; Aizawa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012926. PubMed ID: 25679700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
    Ecke RE
    Chaos; 2015 Sep; 25(9):097605. PubMed ID: 26428558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Machine learning algorithms for predicting the amplitude of chaotic laser pulses.
    Amil P; Soriano MC; Masoller C
    Chaos; 2019 Nov; 29(11):113111. PubMed ID: 31779344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The connections between the frustrated chaos and the intermittency chaos in small Hopfield networks.
    Bersini H; Sener P
    Neural Netw; 2002 Dec; 15(10):1197-204. PubMed ID: 12425438
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Learning Hamiltonian dynamics with reservoir computing.
    Zhang H; Fan H; Wang L; Wang X
    Phys Rev E; 2021 Aug; 104(2-1):024205. PubMed ID: 34525517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex.
    Enel P; Procyk E; Quilodran R; Dominey PF
    PLoS Comput Biol; 2016 Jun; 12(6):e1004967. PubMed ID: 27286251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity.
    Pyle R; Rosenbaum R
    Neural Comput; 2019 Jul; 31(7):1430-1461. PubMed ID: 31113300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Minimal approach to neuro-inspired information processing.
    Soriano MC; Brunner D; Escalona-Morán M; Mirasso CR; Fischer I
    Front Comput Neurosci; 2015; 9():68. PubMed ID: 26082714
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine-learning inference of fluid variables from data using reservoir computing.
    Nakai K; Saiki Y
    Phys Rev E; 2018 Aug; 98(2-1):023111. PubMed ID: 30253537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.