These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Genome-wide discovery of active regulatory elements and transcription factor footprints in Ho MCW; Quintero-Cadena P; Sternberg PW Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739 [TBL] [Abstract][Full Text] [Related]
6. Analysis of computational footprinting methods for DNase sequencing experiments. Gusmao EG; Allhoff M; Zenke M; Costa IG Nat Methods; 2016 Apr; 13(4):303-9. PubMed ID: 26901649 [TBL] [Abstract][Full Text] [Related]
7. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Sullivan AM; Arsovski AA; Lempe J; Bubb KL; Weirauch MT; Sabo PJ; Sandstrom R; Thurman RE; Neph S; Reynolds AP; Stergachis AB; Vernot B; Johnson AK; Haugen E; Sullivan ST; Thompson A; Neri FV; Weaver M; Diegel M; Mnaimneh S; Yang A; Hughes TR; Nemhauser JL; Queitsch C; Stamatoyannopoulos JA Cell Rep; 2014 Sep; 8(6):2015-2030. PubMed ID: 25220462 [TBL] [Abstract][Full Text] [Related]
9. DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing. Filichkin SA; Megraw M Methods Mol Biol; 2017; 1629():141-154. PubMed ID: 28623584 [TBL] [Abstract][Full Text] [Related]
11. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain. Handel AE; Gallone G; Zameel Cader M; Ponting CP Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato. Li R; Cui X Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382 [TBL] [Abstract][Full Text] [Related]
13. Genome-scale mapping of DNase I hypersensitivity. John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440 [TBL] [Abstract][Full Text] [Related]
14. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585 [TBL] [Abstract][Full Text] [Related]
16. High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq. Chumsakul O; Nakamura K; Kurata T; Sakamoto T; Hobman JL; Ogasawara N; Oshima T; Ishikawa S DNA Res; 2013 Aug; 20(4):325-38. PubMed ID: 23580539 [TBL] [Abstract][Full Text] [Related]
17. Predicting cell-type-specific gene expression from regions of open chromatin. Natarajan A; Yardimci GG; Sheffield NC; Crawford GE; Ohler U Genome Res; 2012 Sep; 22(9):1711-22. PubMed ID: 22955983 [TBL] [Abstract][Full Text] [Related]
18. Genome-Wide Identification of Regulatory DNA Elements in Crop Plants. Li Z; Wang K Methods Mol Biol; 2020; 2072():85-99. PubMed ID: 31541440 [TBL] [Abstract][Full Text] [Related]
19. A practical guide for DNase-seq data analysis: from data management to common applications. Liu Y; Fu L; Kaufmann K; Chen D; Chen M Brief Bioinform; 2019 Sep; 20(5):1865-1877. PubMed ID: 30010713 [TBL] [Abstract][Full Text] [Related]