BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34251654)

  • 1. Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI.
    Bengs M; Behrendt F; Krüger J; Opfer R; Schlaefer A
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1413-1423. PubMed ID: 34251654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual autoencoder and singular value decomposition based feature optimization for the segmentation of brain tumor from MRI images.
    Aswani K; Menaka D
    BMC Med Imaging; 2021 May; 21(1):82. PubMed ID: 33985449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. StRegA: Unsupervised anomaly detection in brain MRIs using a compact context-encoding variational autoencoder.
    Chatterjee S; Sciarra A; Dünnwald M; Tummala P; Agrawal SK; Jauhari A; Kalra A; Oeltze-Jafra S; Speck O; Nürnberger A
    Comput Biol Med; 2022 Oct; 149():106093. PubMed ID: 36116318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study.
    Baur C; Denner S; Wiestler B; Navab N; Albarqouni S
    Med Image Anal; 2021 Apr; 69():101952. PubMed ID: 33454602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised anomaly detection in brain MRI: Learning abstract distribution from massive healthy brains.
    Luo G; Xie W; Gao R; Zheng T; Chen L; Sun H
    Comput Biol Med; 2023 Mar; 154():106610. PubMed ID: 36708653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.
    Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of multislice inputs to convolutional neural networks for medical image segmentation.
    Vu MH; Grimbergen G; Nyholm T; Löfstedt T
    Med Phys; 2020 Dec; 47(12):6216-6231. PubMed ID: 33169365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of unsupervised deep learning using a 3D variational autoencoder in detecting inner ear abnormalities on CT images.
    Ogawa M; Kisohara M; Yamamoto T; Shibata S; Ojio Y; Mochizuki K; Tatsuta A; Iwasaki S; Shibamoto Y
    Comput Biol Med; 2022 Aug; 147():105683. PubMed ID: 35667154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised brain imaging 3D anomaly detection and segmentation with transformers.
    Pinaya WHL; Tudosiu PD; Gray R; Rees G; Nachev P; Ourselin S; Cardoso MJ
    Med Image Anal; 2022 Jul; 79():102475. PubMed ID: 35598520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction.
    Han C; Rundo L; Murao K; Noguchi T; Shimahara Y; Milacski ZÁ; Koshino S; Sala E; Nakayama H; Satoh S
    BMC Bioinformatics; 2021 Apr; 22(Suppl 2):31. PubMed ID: 33902457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance.
    Furuhashi N; Okuhata S; Kobayashi T
    Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated lesion detection on MRI scans using combined unsupervised and supervised methods.
    Guo D; Fridriksson J; Fillmore P; Rorden C; Yu H; Zheng K; Wang S
    BMC Med Imaging; 2015 Oct; 15():50. PubMed ID: 26518734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cascaded Deep-Learning Framework for Segmentation of Metastatic Brain Tumors Before and After Stereotactic Radiation Therapy
    Jalalifar A; Soliman H; Sahgal A; Sadeghi-Naini A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1063-1066. PubMed ID: 33018169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks.
    Novosad P; Fonov V; Collins DL;
    Hum Brain Mapp; 2020 Feb; 41(2):309-327. PubMed ID: 31633863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
    Essa E; Aldesouky D; Hussein SE; Rashad MZ
    Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-supervised anomaly detection, staging and segmentation for retinal images.
    Li Y; Lao Q; Kang Q; Jiang Z; Du S; Zhang S; Li K
    Med Image Anal; 2023 Jul; 87():102805. PubMed ID: 37104995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untangling and segmenting the small intestine in 3D cine-MRI using deep learning.
    van Harten LD; de Jonge CS; Beek KJ; Stoker J; Išgum I
    Med Image Anal; 2022 May; 78():102386. PubMed ID: 35259636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.