BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34251702)

  • 1. Bias of time-varying exposure effects due to time-varying covariate measurement strategies.
    Penning de Vries BBL; Groenwold RHH
    Pharmacoepidemiol Drug Saf; 2022 Jan; 31(1):22-27. PubMed ID: 34251702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interval-cohort designs and bias in the estimation of per-protocol effects: a simulation study.
    Young JG; Vatsa R; Murray EJ; Hernán MA
    Trials; 2019 Sep; 20(1):552. PubMed ID: 31488202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of the epidemiology methods and applications: strengths and limitations of observational study designs.
    Colditz GA
    Crit Rev Food Sci Nutr; 2010; 50 Suppl 1(s1):10-2. PubMed ID: 21132580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection bias modeling using observed data augmented with imputed record-level probabilities.
    Thompson CA; Arah OA
    Ann Epidemiol; 2014 Oct; 24(10):747-53. PubMed ID: 25175700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of entropy balance and probability weighting methods to generalize observational cohorts to a population: a simulation and empirical example.
    Harvey RA; Hayden JD; Kamble PS; Bouchard JR; Huang JC
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):368-377. PubMed ID: 27859943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Probability Weights for Quasicontinuous Ordinal Exposures With a Binary Outcome: Method Comparison and Case Study.
    Sack DE; Shepherd BE; Audet CM; De Schacht C; Samuels LR
    Am J Epidemiol; 2023 Jul; 192(7):1192-1206. PubMed ID: 37067471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confounding adjustment methods in longitudinal observational data with a time-varying treatment: a mapping review.
    Wijn SRW; Rovers MM; Hannink G
    BMJ Open; 2022 Mar; 12(3):e058977. PubMed ID: 35304403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confounding and regression adjustment in difference-in-differences studies.
    Zeldow B; Hatfield LA
    Health Serv Res; 2021 Oct; 56(5):932-941. PubMed ID: 33978956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of covariate adjustment approaches under model misspecification in individually randomized trials.
    Tackney MS; Morris T; White I; Leyrat C; Diaz-Ordaz K; Williamson E
    Trials; 2023 Jan; 24(1):14. PubMed ID: 36609282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Time-varying Covariate Approach for Survival Analysis of Paediatric Outcomes.
    Zhao J; Zhao Y; Lee AH; Binns CW
    Paediatr Perinat Epidemiol; 2017 Nov; 31(6):598-602. PubMed ID: 28940519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying bias reduction with fixed-duration versus all-available covariate assessment periods.
    Connolly JG; Schneeweiss S; Glynn RJ; Gagne JJ
    Pharmacoepidemiol Drug Saf; 2019 May; 28(5):665-670. PubMed ID: 30786103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostics for Confounding of Time-varying and Other Joint Exposures.
    Jackson JW
    Epidemiology; 2016 Nov; 27(6):859-69. PubMed ID: 27479649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjusting for adherence in randomized trials when adherence is measured as a continuous variable: An application to the Lipid Research Clinics Coronary Primary Prevention Trial.
    Wanis KN; Madenci AL; Hernán MA; Murray EJ
    Clin Trials; 2020 Oct; 17(5):570-575. PubMed ID: 32414298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covariate association eliminating weights: a unified weighting framework for causal effect estimation.
    Yiu S; Su L
    Biometrika; 2018 Sep; 105(3):709-722. PubMed ID: 31031408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse probability of censoring weighting for visual predictive checks of time-to-event models with time-varying covariates.
    Bartels C; Dumortier T
    Pharm Stat; 2021 Nov; 20(6):1051-1060. PubMed ID: 33855777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for time-varying exposure related problems in pharmacoepidemiology: An overview.
    Pazzagli L; Linder M; Zhang M; Vago E; Stang P; Myers D; Andersen M; Bahmanyar S
    Pharmacoepidemiol Drug Saf; 2018 Feb; 27(2):148-160. PubMed ID: 29285840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When does measurement error in covariates impact causal effect estimates? Analytic derivations of different scenarios and an empirical illustration.
    Sengewald MA; Steiner PM; Pohl S
    Br J Math Stat Psychol; 2019 May; 72(2):244-270. PubMed ID: 30345554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariate adjustment of cumulative incidence functions for competing risks data using inverse probability of treatment weighting.
    Neumann A; Billionnet C
    Comput Methods Programs Biomed; 2016 Jun; 129():63-70. PubMed ID: 27084321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.