These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 34251814)

  • 1. Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits.
    Sacha M; Błaż M; Byrski P; Dąbrowski-Tumański P; Chromiński M; Loska R; Włodarczyk-Pruszyński P; Jastrzębski S
    J Chem Inf Model; 2021 Jul; 61(7):3273-3284. PubMed ID: 34251814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment.
    Zeng K; Yang B; Zhao X; Zhang Y; Nie F; Yang X; Jin Y; Xu Y
    J Cheminform; 2024 Jul; 16(1):80. PubMed ID: 39010144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MARS: a motif-based autoregressive model for retrosynthesis prediction.
    Liu J; Yan C; Yu Y; Lu C; Huang J; Ou-Yang L; Zhao P
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38426338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FraGAT: a fragment-oriented multi-scale graph attention model for molecular property prediction.
    Zhang Z; Guan J; Zhou S
    Bioinformatics; 2021 Sep; 37(18):2981-2987. PubMed ID: 33769437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepReac+: deep active learning for quantitative modeling of organic chemical reactions.
    Gong Y; Xue D; Chuai G; Yu J; Liu Q
    Chem Sci; 2021 Nov; 12(43):14459-14472. PubMed ID: 34880997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrosynthesis Zero: Self-Improving Global Synthesis Planning Using Reinforcement Learning.
    Guo J; Yu C; Li K; Zhang Y; Wang G; Li S; Dong H
    J Chem Theory Comput; 2024 Jun; 20(11):4921-4938. PubMed ID: 38747149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. deepFPlearn +: enhancing toxicity prediction across the chemical universe using graph neural networks.
    Soulios K; Scheibe P; Bernt M; Hackermüller J; Schor J
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38011648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility.
    Tang B; Kramer ST; Fang M; Qiu Y; Wu Z; Xu D
    J Cheminform; 2020 Feb; 12(1):15. PubMed ID: 33431047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Language Model Multitasking To Predict C-H Borylation Selectivity.
    Kotlyarov R; Papachristos K; Wood GPF; Goodman JM
    J Chem Inf Model; 2024 May; 64(10):4286-4297. PubMed ID: 38708520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substructure-based neural machine translation for retrosynthetic prediction.
    Ucak UV; Kang T; Ko J; Lee J
    J Cheminform; 2021 Jan; 13(1):4. PubMed ID: 33431017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Organic Reaction Outcomes Using Machine Learning.
    Coley CW; Barzilay R; Jaakkola TS; Green WH; Jensen KF
    ACS Cent Sci; 2017 May; 3(5):434-443. PubMed ID: 28573205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient prediction of reaction paths through molecular graph and reaction network analysis.
    Kim Y; Kim JW; Kim Z; Kim WY
    Chem Sci; 2018 Jan; 9(4):825-835. PubMed ID: 29675146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing chemical synthesis: a two-stage deep neural network for predicting feasible reaction conditions.
    Chen LY; Li YP
    J Cheminform; 2024 Jan; 16(1):11. PubMed ID: 38268009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph to Activation Energy Models Easily Reach Irreducible Errors but Show Limited Transferability.
    Vadaddi SM; Zhao Q; Savoie BM
    J Phys Chem A; 2024 Apr; 128(13):2543-2555. PubMed ID: 38517281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RPBP: Deep Retrosynthesis Reaction Prediction Based on Byproducts.
    Yan Y; Zhao Y; Yao H; Feng J; Liang L; Han W; Xu X; Pu C; Zang C; Chen L; Li Y; Liu H; Lu T; Chen Y; Zhang Y
    J Chem Inf Model; 2023 Oct; 63(19):5956-5970. PubMed ID: 37724339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AiZynthFinder 4.0: developments based on learnings from 3 years of industrial application.
    Saigiridharan L; Hassen AK; Lai H; Torren-Peraire P; Engkvist O; Genheden S
    J Cheminform; 2024 May; 16(1):57. PubMed ID: 38778382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning organo-transition metal catalyzed reactions by graph neural networks.
    Sakai M; Kaneshige M; Yasuda K
    J Comput Chem; 2024 Mar; 45(6):341-351. PubMed ID: 37877461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy.
    Schwaller P; Petraglia R; Zullo V; Nair VH; Haeuselmann RA; Pisoni R; Bekas C; Iuliano A; Laino T
    Chem Sci; 2020 Mar; 11(12):3316-3325. PubMed ID: 34122839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrosynthesis prediction with an iterative string editing model.
    Han Y; Xu X; Hsieh CY; Ding K; Xu H; Xu R; Hou T; Zhang Q; Chen H
    Nat Commun; 2024 Jul; 15(1):6404. PubMed ID: 39080274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing BioNavi for Hybrid Retrosynthesis Planning.
    Zeng T; Jin Z; Zheng S; Yu T; Wu R
    JACS Au; 2024 Jul; 4(7):2492-2502. PubMed ID: 39055138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.