These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34252024)

  • 21. A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging.
    Kim M; Chung W
    Comput Methods Programs Biomed; 2022 Oct; 225():107090. PubMed ID: 36067702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Compressed sensing magnetic resonance image reconstruction based on double sparse model].
    Fan X; Lian Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Oct; 35(5):688-696. PubMed ID: 30370706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of compressively sampled MR images based on a local shrinkage thresholding algorithm with curvelet transform.
    Wang H; Zhou Y; Wu X; Wang W; Yao Q
    Med Biol Eng Comput; 2019 Oct; 57(10):2145-2158. PubMed ID: 31377962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-rank plus sparse compressed sensing for accelerated proton resonance frequency shift MR temperature imaging.
    Cao Z; Gore JC; Grissom WA
    Magn Reson Med; 2019 Jun; 81(6):3555-3566. PubMed ID: 30706540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning a preconditioner to accelerate compressed sensing reconstructions in MRI.
    Koolstra K; Remis R
    Magn Reson Med; 2022 Apr; 87(4):2063-2073. PubMed ID: 34752655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Network-Driven Prior Induced Bregman Model for Parallel MR Imaging
    Li G; Liu Y; Zhang M; Wang S; Zhu Y; Liu Q; Liang D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4483-4486. PubMed ID: 31946861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset.
    Chen D; Schaeffter T; Kolbitsch C; Kofler A
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast and Calibrationless Low-Rank Parallel Imaging Reconstruction Through Unrolled Deep Learning Estimation of Multi-Channel Spatial Support Maps.
    Yi Z; Hu J; Zhao Y; Xiao L; Liu Y; Leong ATL; Chen F; Wu EX
    IEEE Trans Med Imaging; 2023 Jun; 42(6):1644-1655. PubMed ID: 37018640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compressed sensing MRI based on image decomposition model and group sparsity.
    Fan X; Lian Q; Shi B
    Magn Reson Imaging; 2019 Jul; 60():101-109. PubMed ID: 30910695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Rank Tensor Subspace Decomposition With Weighted Group Sparsity for the Acceleration of Non-Cartesian Dynamic MRI.
    Liu B; Ding Z; Zhang Y; She H; Du YP
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):681-693. PubMed ID: 35994553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DIMENSION: Dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training.
    Wang S; Ke Z; Cheng H; Jia S; Ying L; Zheng H; Liang D
    NMR Biomed; 2022 Apr; 35(4):e4131. PubMed ID: 31482598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-rank plus sparse joint smoothing model based on tensor singular value decomposition for dynamic MRI reconstruction.
    Liu X; He J; Mi C; Zhang X
    Magn Reson Imaging; 2023 Dec; 104():52-60. PubMed ID: 37741515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerating MR Imaging via Deep Chambolle-Pock Network
    Wang H; Ying L; Liang D; Cheng J; Jia S; Qiu Z; Shi C; Zou L; Su S; Chang Y; Zhu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6818-6821. PubMed ID: 31947406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dictionary learning and time sparsity for dynamic MR data reconstruction.
    Caballero J; Price AN; Rueckert D; Hajnal JV
    IEEE Trans Med Imaging; 2014 Apr; 33(4):979-94. PubMed ID: 24710166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review.
    Singh D; Monga A; de Moura HL; Zhang X; Zibetti MVW; Regatte RR
    Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MEDL-Net: A model-based neural network for MRI reconstruction with enhanced deep learned regularizers.
    Qiao X; Huang Y; Li W
    Magn Reson Med; 2023 May; 89(5):2062-2075. PubMed ID: 36656129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning Data Consistency and its Application to Dynamic MR Imaging.
    Cheng J; Cui ZX; Huang W; Ke Z; Ying L; Wang H; Zhu Y; Liang D
    IEEE Trans Med Imaging; 2021 Nov; 40(11):3140-3153. PubMed ID: 34252025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic cardiac MRI reconstruction using motion aligned locally low rank tensor (MALLRT).
    Liu F; Li D; Jin X; Qiu W; Xia Q; Sun B
    Magn Reson Imaging; 2020 Feb; 66():104-115. PubMed ID: 31278998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors.
    Liu Q; Yang Q; Cheng H; Wang S; Zhang M; Liang D
    Magn Reson Med; 2020 Jan; 83(1):322-336. PubMed ID: 31429993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An unsupervised deep learning method for multi-coil cine MRI.
    Ke Z; Cheng J; Ying L; Zheng H; Zhu Y; Liang D
    Phys Med Biol; 2020 Dec; 65(23):235041. PubMed ID: 33263316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.