These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34252470)

  • 21. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns.
    DeBruyn EJ; Casagrande VA; Beck PD; Bonds AB
    J Neurophysiol; 1993 Jan; 69(1):3-18. PubMed ID: 8381862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orientation selectivity in the visual cortex of the nine-banded armadillo.
    Scholl B; Rylee J; Luci JJ; Priebe NJ; Padberg J
    J Neurophysiol; 2017 Mar; 117(3):1395-1406. PubMed ID: 28053246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat.
    Ishikawa A; Shimegi S; Kida H; Sato H
    Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orientation selectivity mapping in the visual cortex.
    Liu ML; Liu YP; Guo XX; Wu ZY; Zhang XT; Roe AW; Hu JM
    Prog Neurobiol; 2024 Sep; 240():102656. PubMed ID: 39009108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Models and measurements of functional maps in V1.
    Issa NP; Rosenberg A; Husson TR
    J Neurophysiol; 2008 Jun; 99(6):2745-54. PubMed ID: 18400962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats.
    Li X; Sun C; Shi L
    Brain Res Bull; 2015 Aug; 117():69-80. PubMed ID: 26222378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex.
    Nishio N; Hayashi K; Ishikawa AW; Yoshimura Y
    J Physiol; 2021 Sep; 599(17):4131-4152. PubMed ID: 34275157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals.
    Xu X; Bosking WH; White LE; Fitzpatrick D; Casagrande VA
    J Neurophysiol; 2005 Oct; 94(4):2748-62. PubMed ID: 16000523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scale-Invariant Visual Capabilities Explained by Topographic Representations of Luminance and Texture in Primate V1.
    Benvenuti G; Chen Y; Ramakrishnan C; Deisseroth K; Geisler WS; Seidemann E
    Neuron; 2018 Dec; 100(6):1504-1512.e4. PubMed ID: 30392796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macaque V1 responses to 2nd-order contrast-modulated stimuli and the possible subcortical and cortical contributions.
    Ju NS; Guan SC; Tang SM; Yu C
    Prog Neurobiol; 2022 Oct; 217():102315. PubMed ID: 35809761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms.
    Prince SJ; Pointon AD; Cumming BG; Parker AJ
    J Neurophysiol; 2002 Jan; 87(1):191-208. PubMed ID: 11784742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different orientation tuning of near- and far-surround suppression in macaque primary visual cortex mirrors their tuning in human perception.
    Shushruth S; Nurminen L; Bijanzadeh M; Ichida JM; Vanni S; Angelucci A
    J Neurosci; 2013 Jan; 33(1):106-19. PubMed ID: 23283326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulus edges induce orientation tuning in superior colliculus.
    Liang Y; Lu R; Borges K; Ji N
    Nat Commun; 2023 Aug; 14(1):4756. PubMed ID: 37553352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial clustering of tuning in mouse primary visual cortex.
    Ringach DL; Mineault PJ; Tring E; Olivas ND; Garcia-Junco-Clemente P; Trachtenberg JT
    Nat Commun; 2016 Aug; 7():12270. PubMed ID: 27481398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal frequency tuning dynamics of neurons in the owl visual wulst.
    Pinto L; Baron J
    J Neurophysiol; 2010 Jun; 103(6):3424-36. PubMed ID: 20393061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orientation selectivity without orientation maps in visual cortex of a highly visual mammal.
    Van Hooser SD; Heimel JA; Chung S; Nelson SB; Toth LJ
    J Neurosci; 2005 Jan; 25(1):19-28. PubMed ID: 15634763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical Representation for Chromatic Processing across Macaque V1, V2, and V4.
    Liu Y; Li M; Zhang X; Lu Y; Gong H; Yin J; Chen Z; Qian L; Yang Y; Andolina IM; Shipp S; Mcloughlin N; Tang S; Wang W
    Neuron; 2020 Nov; 108(3):538-550.e5. PubMed ID: 32853551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatic micromaps in primary visual cortex.
    Chatterjee S; Ohki K; Reid RC
    Nat Commun; 2021 Apr; 12(1):2315. PubMed ID: 33875667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plaid Detectors in Macaque V1 Revealed by Two-Photon Calcium Imaging.
    Guan SC; Zhang SH; Zhang YC; Tang SM; Yu C
    Curr Biol; 2020 Mar; 30(5):934-940.e3. PubMed ID: 32084400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional anatomy of the second visual area (V2) in the macaque.
    Tootell RB; Hamilton SL
    J Neurosci; 1989 Aug; 9(8):2620-44. PubMed ID: 2769360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.