These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 342525)

  • 21. Repression of synthesis of the vitamin B12 receptor in Escherichia coli.
    Kadner RJ
    J Bacteriol; 1978 Dec; 136(3):1050-7. PubMed ID: 363685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two outer membrane transport systems for vitamin B12 in Salmonella typhimurium.
    Rioux CR; Kadner RJ
    J Bacteriol; 1989 Jun; 171(6):2986-93. PubMed ID: 2656634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional lac carrier proteins in cytoplasmic membrane vesicles isolated from Escherichia coli. 2. Experimental evidence for a segregation of the lac carrier proteins induced by a conformational transition of the membrane lipids.
    Letellier L; Weil R; Shechter E
    Biochemistry; 1977 Aug; 16(17):3777-80. PubMed ID: 332222
    [No Abstract]   [Full Text] [Related]  

  • 24. A 76-residue polypeptide of colicin E9 confers receptor specificity and inhibits the growth of vitamin B12-dependent Escherichia coli 113/3 cells.
    Penfold CN; Garinot-Schneider C; Hemmings AM; Moore GR; Kleanthous C; James R
    Mol Microbiol; 2000 Nov; 38(3):639-49. PubMed ID: 11069686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The DCCD-binding polypeptide is close to the F1 ATPase-binding site on the cytoplasmic surface of the cell membrane of Escherichia coli.
    Loo TW; Bragg PD
    Biochem Biophys Res Commun; 1982 May; 106(2):400-6. PubMed ID: 6213230
    [No Abstract]   [Full Text] [Related]  

  • 26. Structure-function analysis of the vitamin B12 receptor of Escherichia coli by means of informational suppression.
    Hufton SE; Ward RJ; Bunce NA; Armstrong JT; Fletcher AJ; Glass RE
    Mol Microbiol; 1995 Jan; 15(2):381-93. PubMed ID: 7746157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport.
    Gudmundsdottir A; Bell PE; Lundrigan MD; Bradbeer C; Kadner RJ
    J Bacteriol; 1989 Dec; 171(12):6526-33. PubMed ID: 2687240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered binding and transport of vitamin B12 resulting from insertion mutations in the Escherichia coli btuB gene.
    Gudmundsdottir A; Bradbeer C; Kadner RJ
    J Biol Chem; 1988 Oct; 263(28):14224-30. PubMed ID: 2844761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phage T6--colicin K receptor and nucleoside transport in Escherichia coli.
    Hantke K
    FEBS Lett; 1976 Nov; 70(1):109-12. PubMed ID: 791677
    [No Abstract]   [Full Text] [Related]  

  • 30. Transport of branched-chain amino acids in Escherichia coli.
    Antonucci TK; Oxender DL
    Methods Enzymol; 1988; 166():245-51. PubMed ID: 3071708
    [No Abstract]   [Full Text] [Related]  

  • 31. Calcium-induced permeabilization of the outer membrane: a method for reconstitution of periplasmic binding protein-dependent transport systems in Escherichia coli and Salmonella typhimurium.
    Brass JM
    Methods Enzymol; 1986; 125():289-302. PubMed ID: 3520224
    [No Abstract]   [Full Text] [Related]  

  • 32. In vivo evidence for FhuA outer membrane receptor interaction with the TonB inner membrane protein of Escherichia coli.
    Günter K; Braun V
    FEBS Lett; 1990 Nov; 274(1-2):85-8. PubMed ID: 2253788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping.
    Mademidis A; Killmann H; Kraas W; Flechsler I; Jung G; Braun V
    Mol Microbiol; 1997 Dec; 26(5):1109-23. PubMed ID: 9426146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge.
    Sherman DJ; Xie R; Taylor RJ; George AH; Okuda S; Foster PJ; Needleman DJ; Kahne D
    Science; 2018 Feb; 359(6377):798-801. PubMed ID: 29449493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selectivity of the Escherichia coli outer membrane porins ompC and ompF.
    Heller KB; Wilson TH
    FEBS Lett; 1981 Jul; 129(2):253-5. PubMed ID: 6269878
    [No Abstract]   [Full Text] [Related]  

  • 36. Human gut
    Wexler AG; Schofield WB; Degnan PH; Folta-Stogniew E; Barry NA; Goodman AL
    Elife; 2018 Sep; 7():. PubMed ID: 30226189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli.
    Poolman B; Konings WN; Robillard GT
    Eur J Biochem; 1983 Sep; 135(1):41-6. PubMed ID: 6349997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Close before opening.
    Postle K
    Science; 2002 Mar; 295(5560):1658-9. PubMed ID: 11872826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between the F0F1-ATPase and the K(+)-transport system within the membrane of anaerobically grown Escherichia coli. N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K(+)-transport.
    Trchounian AA; Vassilian AV
    J Bioenerg Biomembr; 1994 Oct; 26(5):563-71. PubMed ID: 7896771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interdependence of calcium and cobalamin binding by wild-type and mutant BtuB protein in the outer membrane of Escherichia coli.
    Bradbeer C; Gudmundsdottir A
    J Bacteriol; 1990 Sep; 172(9):4919-26. PubMed ID: 2168369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.