These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 34252668)
1. The leaching behavior of copper and iron recovery from reduction roasting pyrite cinder. Zhang H; Chen G; Cai X; Fu J; Liu M; Zhang P; Yu H J Hazard Mater; 2021 Oct; 420():126561. PubMed ID: 34252668 [TBL] [Abstract][Full Text] [Related]
2. Recovery of Cu, Co, and Fe from Pyrite Cinder Based on Mineral Phase Reconstruction. Yu H; Liu L; Chen G; Zhou X; Lu M; Zhang H ACS Omega; 2024 Aug; 9(31):33471-33481. PubMed ID: 39130537 [TBL] [Abstract][Full Text] [Related]
3. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant. Erust C; Akcil A Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736 [TBL] [Abstract][Full Text] [Related]
4. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation. Tao H; Dongwei L Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669 [TBL] [Abstract][Full Text] [Related]
5. Recovery iron from cyanide tailings by anaerobic roasting-persulfate leaching: effect of roasting temperature. Dong P; Song Y; Wu L; Bao J; Yin N; Zhu R; Li Y Environ Sci Pollut Res Int; 2023 Apr; 30(17):50537-50548. PubMed ID: 36795215 [TBL] [Abstract][Full Text] [Related]
6. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores. Harahuc L; Lizama HM; Suzuki I Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans. Kocaman AT; Cemek M; Edwards KJ Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502 [TBL] [Abstract][Full Text] [Related]
8. An active dealkalization of red mud with roasting and water leaching. Zhu X; Li W; Guan X J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862 [TBL] [Abstract][Full Text] [Related]
9. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction. Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678 [TBL] [Abstract][Full Text] [Related]
10. Microwave-enhanced reduction of manganese from a low-grade pyrolusite ore using pyrite: process optimization and kinetic studies. Lin S; Gao L; Yang Y; Liu R; Chen J; Guo S; Omran M; Chen G Environ Sci Pollut Res Int; 2022 Aug; 29(39):58915-58926. PubMed ID: 35368238 [TBL] [Abstract][Full Text] [Related]
11. Bulk flotation followed by selective leaching with biogenic ferric iron is a promising solution for eco-friendly processing of complex sulfidic ores. Muravyov M; Panyushkina A; Fomchenko N J Environ Manage; 2022 Sep; 318():115587. PubMed ID: 35759958 [TBL] [Abstract][Full Text] [Related]
12. Using of leaching reactant obtained from mill scale in hydrometallurgical copper extraction. Nizamoğlu H; Turan MD Environ Sci Pollut Res Int; 2021 Oct; 28(39):54811-54825. PubMed ID: 34013418 [TBL] [Abstract][Full Text] [Related]
14. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite. Lopez-Arce P; Garcia-Guinea J; Garrido F Chemosphere; 2017 Aug; 181():447-460. PubMed ID: 28458220 [TBL] [Abstract][Full Text] [Related]
15. Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction. Han B; Altansukh B; Haga K; Stevanović Z; Jonović R; Avramović L; Urosević D; Takasaki Y; Masuda N; Ishiyama D; Shibayama A J Hazard Mater; 2018 Jun; 352():192-203. PubMed ID: 29609151 [TBL] [Abstract][Full Text] [Related]
16. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Li Y; Kawashima N; Li J; Chandra AP; Gerson AR Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420 [TBL] [Abstract][Full Text] [Related]
17. A potential industrial waste-waste co-treatment process of utilizing waste SO Wan X; Taskinen P; Shi J; Jokilaakso A J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318 [TBL] [Abstract][Full Text] [Related]
18. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution. Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694 [TBL] [Abstract][Full Text] [Related]
19. Pyrite cinder as a cost-effective heterogeneous catalyst in heterogeneous Fenton reaction: decomposition of H(2)O(2) and degradation of Acid Red B. Wu D; Liu Y; Duan D; Ma L Water Sci Technol; 2014; 70(9):1548-54. PubMed ID: 25401320 [TBL] [Abstract][Full Text] [Related]
20. A Novel Approach for Comprehensive Utilization by Leaching Pyrite Cinder with Titanium Dioxide Waste Acid by Response Surface Methodology. Tian C ACS Omega; 2024 Feb; 9(7):8510-8519. PubMed ID: 38405457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]