These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34252772)

  • 1. Freeze-thaw cycles promote vertical migration of metal oxide nanoparticles in soils.
    Xu G; Zheng Q; Yang X; Yu R; Yu Y
    Sci Total Environ; 2021 Nov; 795():148894. PubMed ID: 34252772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead immobilization processes in soils subjected to freeze-thaw cycles.
    Du L; Dyck M; Shotyk W; He H; Lv J; Cuss CW; Bie J
    Ecotoxicol Environ Saf; 2020 Apr; 192():110288. PubMed ID: 32078838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of clay colloid - CuO nanoparticles interaction on retention of nanoparticles in different types of soils: role of clay fraction and environmental parameters.
    Tiwari E; Khandelwal N; Singh N; Biswas S; Darbha GK
    Environ Res; 2022 Jan; 203():111885. PubMed ID: 34390712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.
    Zhang W; Musante C; White JC; Schwab P; Wang Q; Ebbs SD; Ma X
    Plant Physiol Biochem; 2017 Jan; 110():185-193. PubMed ID: 26754029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Effects of Cerium Oxide Nanoparticles and Zinc Oxide Nanoparticles on Arsenic Uptake and Speciation in Rice ( Oryza sativa) in a Hydroponic System.
    Wang X; Sun W; Zhang S; Sharifan H; Ma X
    Environ Sci Technol; 2018 Sep; 52(17):10040-10047. PubMed ID: 30075083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Metal Oxide Nanoparticles on the Chemical Speciation of Heavy Metals and Micronutrient Bioavailability in Paddy Soil.
    Zhang W; Long J; Li J; Zhang M; Ye X; Chang W; Zeng H
    Int J Environ Res Public Health; 2020 Apr; 17(7):. PubMed ID: 32260493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different responses of CO
    Yang S; He Z; Chen L
    Sci Total Environ; 2023 Mar; 863():160886. PubMed ID: 36528098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of engineered nanoparticles in partially saturated sand columns.
    Yecheskel Y; Dror I; Berkowitz B
    J Hazard Mater; 2016 Jul; 311():254-62. PubMed ID: 26995325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays.
    Hwang G; Kim D
    Environ Pollut; 2024 Jun; 351():124007. PubMed ID: 38677461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-thaw cycles lead to enhanced colloid-facilitated Pb transport in a Chernozem soil.
    Wang Z; Zhang Y; Flury M; Zou H
    J Contam Hydrol; 2022 Dec; 251():104093. PubMed ID: 36265266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of freeze-thaw cycles on methanogenic hydrocarbon degradation: Experiment and modeling.
    Ramezanzadeh M; Slowinski S; Rezanezhad F; Murr K; Lam C; Smeaton C; Alibert C; Vandergriendt M; Van Cappellen P
    Chemosphere; 2023 Jun; 325():138405. PubMed ID: 36931401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical variation of a black soil's properties in response to freeze-thaw cycles and its links to shift of microbial community structure.
    Han Z; Deng M; Yuan A; Wang J; Li H; Ma J
    Sci Total Environ; 2018 Jun; 625():106-113. PubMed ID: 29288997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The co-occurrence of Zn-and Cu-based engineered nanoparticles in soils: The metal extractability vs. toxicity to Folsomia candida.
    Jośko I; Krasucka P; Skwarek E; Oleszczuk P; Sheteiwy M
    Chemosphere; 2022 Jan; 287(Pt 3):132252. PubMed ID: 34555583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobility and Fate of Cerium Dioxide, Zinc Oxide, and Copper Nanoparticles in Agricultural Soil at Sequential Wetting-Drying Cycles.
    Ermolin M; Fedyunina N; Katasonova O
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key factors determining soil organic carbon changes after freeze-thaw cycles in a watershed located in northeast China.
    Zhang S; Xiao Z; Zhang H; Aurangzeib M
    Sci Total Environ; 2022 Jul; 828():154525. PubMed ID: 35288134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of engineered nanomaterials in complex aqueous matrices: Settling behaviour of CeO2 nanoparticles in natural surface waters.
    Van Koetsem F; Verstraete S; Van der Meeren P; Du Laing G
    Environ Res; 2015 Oct; 142():207-14. PubMed ID: 26164115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.
    Van Koetsem F; Van Havere L; Du Laing G
    J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod.
    Hanna SK; Miller RJ; Zhou D; Keller AA; Lenihan HS
    Aquat Toxicol; 2013 Oct; 142-143():441-6. PubMed ID: 24121101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.
    Rossi L; Zhang W; Lombardini L; Ma X
    Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of nanoplastic debris on the stability and transport of metal oxide nanoparticles: role of varying soil solution chemistry.
    Tiwari E; Singh N; Khandelwal N; Ganie ZA; Choudhary A; Monikh FA; Darbha GK
    Chemosphere; 2022 Dec; 308(Pt 1):136091. PubMed ID: 36002060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.