These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34252823)

  • 1. Frontal plane roll-over analysis of prosthetic feet.
    van Hal ES; Curtze C; Postema K; Hijmans JM; Otten E
    J Biomech; 2021 Aug; 125():110610. PubMed ID: 34252823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative roll-over analysis of prosthetic feet.
    Curtze C; Hof AL; van Keeken HG; Halbertsma JP; Postema K; Otten B
    J Biomech; 2009 Aug; 42(11):1746-53. PubMed ID: 19446814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system.
    Major MJ; Scham J; Orendurff M
    Prosthet Orthot Int; 2018 Apr; 42(2):198-207. PubMed ID: 28486847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional joint center of prosthetic feet during level ground and incline walking.
    Lecomte C; Starker F; Guðnadóttir EÞ; Rafnsdóttir S; Guðmundsson K; Briem K; Brynjolfsson S
    Med Eng Phys; 2020 Jul; 81():13-21. PubMed ID: 32527519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical design framework for prosthetic feet: Experimentally validated non-linear finite element procedure.
    Balaramakrishnan TM; Natarajan S; Sujatha S
    Med Eng Phys; 2021 Jun; 92():64-70. PubMed ID: 34167713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiffness and hysteresis properties of some prosthetic feet.
    van Jaarsveld HW; Grootenboer HJ; de Vries J; Koopman HF
    Prosthet Orthot Int; 1990 Dec; 14(3):117-24. PubMed ID: 2095529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and dynamic characterization of prosthetic feet for high activity users during weighted and unweighted walking.
    Koehler-McNicholas SR; Nickel EA; Barrons K; Blaharski KE; Dellamano CA; Ray SF; Schnall BL; Hendershot BD; Hansen AH
    PLoS One; 2018; 13(9):e0202884. PubMed ID: 30208040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of prosthetic feet used in low-income countries.
    Sam M; Hansen AH; Childress DS
    Prosthet Orthot Int; 2004 Aug; 28(2):132-40. PubMed ID: 15382807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower-limb amputee ankle and hip kinetic response to an imposed error in mediolateral foot placement.
    Segal AD; Shofer JB; Klute GK
    J Biomech; 2015 Nov; 48(15):3982-3988. PubMed ID: 26475221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Passive Polycentric Mechanism to Improve Active Mediolateral Balance in Prosthetic Walking.
    van Hal ES; Hijmans JM; Postema K; Otten E
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():63-71. PubMed ID: 38051623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A more compliant prosthetic foot better accommodates added load while walking among Servicemembers with transtibial limb loss.
    Schnall BL; Dearth CL; Elrod JM; Golyski PR; Koehler-McNicholas SR; Ray SF; Hansen AH; Hendershot BD
    J Biomech; 2020 Jan; 98():109395. PubMed ID: 31668413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design.
    Khoury M; Wolf A; Debbi EM; Herman A; Haim A
    Foot Ankle Int; 2013 Apr; 34(4):593-8. PubMed ID: 23449662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heel-region properties of prosthetic feet and shoes.
    Klute GK; Berge JS; Segal AD
    J Rehabil Res Dev; 2004 Jul; 41(4):535-46. PubMed ID: 15558382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.
    Meier MR; Tucker KA; Hansen AH
    J Rehabil Res Dev; 2014; 51(3):439-50. PubMed ID: 25019666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of alignment on the roll-over shapes of prosthetic feet.
    Hansen A
    Prosthet Orthot Int; 2008 Dec; 32(4):390-402. PubMed ID: 18985550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a Simple Walking Model to Optimize Transfemoral Prostheses for Prosthetic Limb Stability-A Preliminary Study.
    Pace A; Howard D; Gard SA; Major MJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3005-3012. PubMed ID: 33275584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment.
    De Asha AR; Johnson L; Munjal R; Kulkarni J; Buckley JG
    Clin Biomech (Bristol); 2013 Feb; 28(2):218-24. PubMed ID: 23261018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses.
    Hansen AH; Childress DS; Knox EH
    Prosthet Orthot Int; 2000 Dec; 24(3):205-15. PubMed ID: 11195355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation].
    Blumentritt S; Schmalz T; Jarasch R
    Orthopade; 2001 Mar; 30(3):161-8. PubMed ID: 11501007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.