These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34252823)

  • 21. Emulating the Effective Ankle Stiffness of Commercial Prosthetic Feet Using a Robotic Prosthetic Foot Emulator.
    Halsne EG; Curran CS; Caputo JM; Hansen AH; Hafner BJ; Morgenroth DC
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35722979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy storage and stress-strain characteristics of a prosthetic foot: a priori design and analysis with experiments.
    Mannan Balaramakrishnan T; Natarajan S; Sujatha S
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3579. PubMed ID: 35119772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical characteristics, patient preference and activity level with different prosthetic feet: a randomized double blind trial with laboratory and community testing.
    Raschke SU; Orendurff MS; Mattie JL; Kenyon DE; Jones OY; Moe D; Winder L; Wong AS; Moreno-Hernández A; Highsmith MJ; J Sanderson D; Kobayashi T
    J Biomech; 2015 Jan; 48(1):146-52. PubMed ID: 25480541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frontal plane pelvis and hip kinematics of transfemoral amputee gait. Effect of a prosthetic foot with active ankle dorsiflexion and individualized training - a case study.
    Armannsdottir A; Tranberg R; Halldorsdottir G; Briem K
    Disabil Rehabil Assist Technol; 2018 May; 13(4):388-393. PubMed ID: 28974119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement.
    Segal AD; Klute GK
    J Biomech; 2014 Sep; 47(12):2911-8. PubMed ID: 25145315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing adaptations of prosthetic feet in the frontal plane.
    Ernst M; Altenburg B; Schmalz T
    Prosthet Orthot Int; 2020 Aug; 44(4):225-233. PubMed ID: 32493118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of prosthetic foot forefoot flexibility on gait of unilateral transtibial prosthesis users.
    Klodd E; Hansen A; Fatone S; Edwards M
    J Rehabil Res Dev; 2010; 47(9):899-910. PubMed ID: 21174254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element modeling of an energy storing and return prosthetic foot and implications of stiffness on rollover shape.
    Cavallaro L; Tessari F; Milandri G; De Benedictis C; Ferraresi C; Laffranchi M; De Michieli L
    Proc Inst Mech Eng H; 2022 Feb; 236(2):218-227. PubMed ID: 34693815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of a Prosthetic Foot With Increased Coronal Adaptability on Cross-Slope Walking.
    Altenburg B; Ernst M; Maciejasz P; Schmalz T; Braatz F; Gerke H; Bellmann M
    Can Prosthet Orthot J; 2021; 4(1):35206. PubMed ID: 37614934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of transverse rotation angle on compression and effective lever arm of prosthetic feet during simulated stance.
    Major MJ; Howard D; Jones R; Twiste M
    Prosthet Orthot Int; 2012 Jun; 36(2):231-5. PubMed ID: 22389423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet.
    Webber CM; Kaufman K
    Prosthet Orthot Int; 2017 Oct; 41(5):463-468. PubMed ID: 28008788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alignment of trans-tibial prostheses based on roll-over shape principles.
    Hansen AH; Meier MR; Sam M; Childress DS; Edwards ML
    Prosthet Orthot Int; 2003 Aug; 27(2):89-99. PubMed ID: 14571938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The 'shape&roll' prosthetic foot: I. Design and development of appropriate technology for low-income countries.
    Sam M; Childress DS; Hansen AH; Meier MR; Lambla S; Grahn EC; Rolock JS
    Med Confl Surviv; 2004; 20(4):294-306. PubMed ID: 15688881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.
    De Asha AR; Munjal R; Kulkarni J; Buckley JG
    Clin Biomech (Bristol); 2014 Aug; 29(7):728-34. PubMed ID: 24997811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees.
    Hof AL; van Bockel RM; Schoppen T; Postema K
    Gait Posture; 2007 Feb; 25(2):250-8. PubMed ID: 16740390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variable stiffness foot design and validation.
    Lecomte C; Ármannsdóttir AL; Starker F; Tryggvason H; Briem K; Brynjolfsson S
    J Biomech; 2021 Jun; 122():110440. PubMed ID: 33901938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A robust technique for optimal fitting of roll-over shapes of human locomotor systems.
    Bapat GM; Myers SA
    Med Eng Phys; 2022 Feb; 100():103756. PubMed ID: 35144739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.