BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34252923)

  • 1. Bacteriophage classification for assembled contigs using graph convolutional network.
    Shang J; Jiang J; Sun Y
    Bioinformatics; 2021 Jul; 37(Suppl_1):i25-i33. PubMed ID: 34252923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3CAC: improving the classification of phages and plasmids in metagenomic assemblies using assembly graphs.
    Pu L; Shamir R
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii56-ii61. PubMed ID: 36124804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeephageTP: a convolutional neural network framework for identifying phage-specific proteins from metagenomic sequencing data.
    Chu Y; Guo S; Cui D; Fu X; Ma Y
    PeerJ; 2022; 10():e13404. PubMed ID: 35698617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phage-bacterial contig association prediction with a convolutional neural network.
    Tang T; Hou S; Fuhrman JA; Sun F
    Bioinformatics; 2022 Jun; 38(Suppl 1):i45-i52. PubMed ID: 35758806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate identification of bacteriophages from metagenomic data using Transformer.
    Shang J; Tang X; Guo R; Sun Y
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35769000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seeker: alignment-free identification of bacteriophage genomes by deep learning.
    Auslander N; Gussow AB; Benler S; Wolf YI; Koonin EV
    Nucleic Acids Res; 2020 Dec; 48(21):e121. PubMed ID: 33045744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHEER: HierarCHical taxonomic classification for viral mEtagEnomic data via deep leaRning.
    Shang J; Sun Y
    Methods; 2021 May; 189():95-103. PubMed ID: 32454212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer.
    Shang J; Peng C; Tang X; Sun Y
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i30-i39. PubMed ID: 37387136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PhaBOX: a web server for identifying and characterizing phage contigs in metagenomic data.
    Shang J; Peng C; Liao H; Tang X; Sun Y
    Bioinform Adv; 2023; 3(1):vbad101. PubMed ID: 37641717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning.
    Fang Z; Tan J; Wu S; Li M; Xu C; Xie Z; Zhu H
    Gigascience; 2019 Jun; 8(6):. PubMed ID: 31220250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhaTYP: predicting the lifestyle for bacteriophages using BERT.
    Shang J; Tang X; Sun Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36659812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HOTSPOT: hierarchical host prediction for assembled plasmid contigs with transformer.
    Ji Y; Shang J; Tang X; Sun Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37086432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phables: from fragmented assemblies to high-quality bacteriophage genomes.
    Mallawaarachchi V; Roach MJ; Decewicz P; Papudeshi B; Giles SK; Grigson SR; Bouras G; Hesse RD; Inglis LK; Hutton ALK; Dinsdale EA; Edwards RA
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37738590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virsearcher: Identifying Bacteriophages from Metagenomes by Combining Convolutional Neural Network and Gene Information.
    Liu Q; Liu F; Miao Y; He J; Dong T; Hou T; Liu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):763-774. PubMed ID: 35316191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mini-Metagenomics and Nucleotide Composition Aid the Identification and Host Association of Novel Bacteriophage Sequences.
    Deaton J; Yu FB; Quake SR
    Adv Biosyst; 2019 Nov; 3(11):e1900108. PubMed ID: 32648690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SolidBin: improving metagenome binning with semi-supervised normalized cut.
    Wang Z; Wang Z; Lu YY; Sun F; Zhu S
    Bioinformatics; 2019 Nov; 35(21):4229-4238. PubMed ID: 30977806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning.
    Shang J; Sun Y
    BMC Biol; 2021 Nov; 19(1):250. PubMed ID: 34819064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut.
    Castro-Mejía JL; Muhammed MK; Kot W; Neve H; Franz CM; Hansen LH; Vogensen FK; Nielsen DS
    Microbiome; 2015 Nov; 3():64. PubMed ID: 26577924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil.
    Göller PC; Haro-Moreno JM; Rodriguez-Valera F; Loessner MJ; Gómez-Sanz E
    Microbiome; 2020 Feb; 8(1):17. PubMed ID: 32046783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Diversity and Phage-Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing.
    Jaiani E; Kusradze I; Kokashvili T; Geliashvili N; Janelidze N; Kotorashvili A; Kotaria N; Guchmanidze A; Tediashvili M; Prangishvili D
    Mar Drugs; 2020 Nov; 18(11):. PubMed ID: 33202695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.