BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34252943)

  • 1. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.
    Huang D; Song B; Wei J; Su J; Coenen F; Meng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i222-i230. PubMed ID: 34252943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes.
    Song Y; Wang Y; Wang X; Huang D; Nguyen A; Meng J
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36932656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEA: an integrated R toolkit for plant epitranscriptome analysis.
    Zhai J; Song J; Cheng Q; Tang Y; Ma C
    Bioinformatics; 2018 Nov; 34(21):3747-3749. PubMed ID: 29850798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances in mapping analysis of ribonucleic acid modifications through sequencing].
    Xiong J; Feng T; Yuan BF
    Se Pu; 2024 Jul; 42(7):632-645. PubMed ID: 38966972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. m6A-Maize: Weakly supervised prediction of m
    Liang Z; Zhang L; Chen H; Huang D; Song B
    Methods; 2022 Jul; 203():226-232. PubMed ID: 34843978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.
    Hassan D; Ariyur A; Daulatabad SV; Mir Q; Janga SC
    RNA Biol; 2024 Jan; 21(1):1-15. PubMed ID: 38758523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.
    Hocking TD; Goerner-Potvin P; Morin A; Shao X; Pastinen T; Bourque G
    Bioinformatics; 2017 Feb; 33(4):491-499. PubMed ID: 27797775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MetaTX: deciphering the distribution of mRNA-related features in the presence of isoform ambiguity, with applications in epitranscriptome analysis.
    Wang Y; Chen K; Wei Z; Coenen F; Su J; Meng J
    Bioinformatics; 2021 Jun; 37(9):1285-1291. PubMed ID: 33135046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.
    Chen K; Wei Z; Zhang Q; Wu X; Rong R; Lu Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2019 Apr; 47(7):e41. PubMed ID: 30993345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction.
    Yi R; Cho K; Bonneau R
    Bioinformatics; 2022 Oct; 38(20):4762-4770. PubMed ID: 35997560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions.
    Yan Z; Hamilton WL; Blanchette M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i276-i284. PubMed ID: 32657407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DRUMMER-rapid detection of RNA modifications through comparative nanopore sequencing.
    Abebe JS; Price AM; Hayer KE; Mohr I; Weitzman MD; Wilson AC; Depledge DP
    Bioinformatics; 2022 May; 38(11):3113-3115. PubMed ID: 35426900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WHISTLE: A Functionally Annotated High-Accuracy Map of Human m
    Xu Q; Chen K; Meng J
    Methods Mol Biol; 2021; 2284():519-529. PubMed ID: 33835461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting sites of epitranscriptome modifications using unsupervised representation learning based on generative adversarial networks.
    Salekin S; Mostavi M; Chiu YC; Chen Y; Zhang JM; Huang Y
    Front Phys; 2020 Jun; 8():. PubMed ID: 33274189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CircSI-SSL: circRNA-binding site identification based on self-supervised learning.
    Cao C; Wang C; Yang S; Zou Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38180876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.