BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34252943)

  • 21. Interpretable prediction models for widespread m6A RNA modification across cell lines and tissues.
    Zhang Y; Wang Z; Zhang Y; Li S; Guo Y; Song J; Yu DJ
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 37995291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepMirTar: a deep-learning approach for predicting human miRNA targets.
    Wen M; Cong P; Zhang Z; Lu H; Li T
    Bioinformatics; 2018 Nov; 34(22):3781-3787. PubMed ID: 29868708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling multi-species RNA modification through multi-task curriculum learning.
    Xiong Y; He X; Zhao D; Tian T; Hong L; Jiang T; Zeng J
    Nucleic Acids Res; 2021 Apr; 49(7):3719-3734. PubMed ID: 33744973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts.
    Tan KT; Ding LW; Wu CS; Tenen DG; Yang H
    Sci Adv; 2021 Aug; 7(32):. PubMed ID: 34348892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. aliFreeFold: an alignment-free approach to predict secondary structure from homologous RNA sequences.
    Glouzon JS; Ouangraoua A
    Bioinformatics; 2018 Jul; 34(13):i70-i78. PubMed ID: 29949960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Weakly-Supervised Convolutional Neural Network Architecture for Predicting Protein-DNA Binding.
    Zhang Q; Zhu L; Bao W; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):679-689. PubMed ID: 30106688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ArtiFuse-computational validation of fusion gene detection tools without relying on simulated reads.
    Sorn P; Holtsträter C; Löwer M; Sahin U; Weber D
    Bioinformatics; 2020 Jan; 36(2):373-379. PubMed ID: 31373612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GlyinsRNA: a webserver for predicting glycosylation sites on small RNAs.
    Cui C; Wu X; Zhou Y
    RNA Biol; 2021 Nov; 18(sup2):600-603. PubMed ID: 34559595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. WHISTLE server: A high-accuracy genomic coordinate-based machine learning platform for RNA modification prediction.
    Liu L; Song B; Chen K; Zhang Y; de Magalhães JP; Rigden DJ; Lei X; Wei Z
    Methods; 2022 Jul; 203():378-382. PubMed ID: 34245870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Informatics Pipeline for Profiling and Annotating RNA Modifications.
    Liu Q; Lang X; Gregory RI
    Methods Mol Biol; 2021; 2298():15-27. PubMed ID: 34085236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the accuracy of single sequence prediction methods using a deep semi-supervised learning framework.
    Moffat L; Jones DT
    Bioinformatics; 2021 Nov; 37(21):3744-3751. PubMed ID: 34213528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.
    Kulmanov M; Khan MA; Hoehndorf R; Wren J
    Bioinformatics; 2018 Feb; 34(4):660-668. PubMed ID: 29028931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deconvolution of expression for nascent RNA-sequencing data (DENR) highlights pre-RNA isoform diversity in human cells.
    Zhao Y; Dukler N; Barshad G; Toneyan S; Danko CG; Siepel A
    Bioinformatics; 2021 Dec; 37(24):4727-4736. PubMed ID: 34382072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications.
    Sahu A; Li N; Dunkel I; Chung HR
    Epigenetics Chromatin; 2020 Apr; 13(1):20. PubMed ID: 32264931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orchid: a novel management, annotation and machine learning framework for analyzing cancer mutations.
    Cario CL; Witte JS
    Bioinformatics; 2018 Mar; 34(6):936-942. PubMed ID: 29106441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.