These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34252943)

  • 41. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Matched Forest: supervised learning for high-dimensional matched case-control studies.
    Shomal Zadeh N; Lin S; Runger GC
    Bioinformatics; 2020 Mar; 36(5):1570-1576. PubMed ID: 31621830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine learning classifier DIEM.
    Alvarez M; Rahmani E; Jew B; Garske KM; Miao Z; Benhammou JN; Ye CJ; Pisegna JR; Pietiläinen KH; Halperin E; Pajukanta P
    Sci Rep; 2020 Jul; 10(1):11019. PubMed ID: 32620816
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ABEILLE: a novel method for ABerrant Expression Identification empLoying machine LEarning from RNA-sequencing data.
    Labory J; Le Bideau G; Pratella D; Yao JE; Ait-El-Mkadem Saadi S; Bannwarth S; El-Hami L; Paquis-Fluckinger V; Bottini S
    Bioinformatics; 2022 Oct; 38(20):4754-4761. PubMed ID: 36063052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Staem5: A novel computational approachfor accurate prediction of m5C site.
    Chai D; Jia C; Zheng J; Zou Q; Li F
    Mol Ther Nucleic Acids; 2021 Dec; 26():1027-1034. PubMed ID: 34786208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NIAPU: network-informed adaptive positive-unlabeled learning for disease gene identification.
    Stolfi P; Mastropietro A; Pasculli G; Tieri P; Vergni D
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36727493
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extracting microRNA-gene relations from biomedical literature using distant supervision.
    Lamurias A; Clarke LA; Couto FM
    PLoS One; 2017; 12(3):e0171929. PubMed ID: 28263989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A deep learning method for lincRNA detection using auto-encoder algorithm.
    Yu N; Yu Z; Pan Y
    BMC Bioinformatics; 2017 Dec; 18(Suppl 15):511. PubMed ID: 29244011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization.
    Feng Z; Ren X; Fang Y; Yin Y; Huang C; Zhao Y; Wang Y
    Bioinformatics; 2020 Apr; 36(8):2474-2485. PubMed ID: 31845960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequoia: an interactive visual analytics platform for interpretation and feature extraction from nanopore sequencing datasets.
    Koonchanok R; Daulatabad SV; Mir Q; Reda K; Janga SC
    BMC Genomics; 2021 Jul; 22(1):513. PubMed ID: 34233619
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration.
    Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X
    Bioinformatics; 2021 Jul; 37(Suppl_1):i317-i326. PubMed ID: 34252968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An accessibility-incorporated method for accurate prediction of RNA-RNA interactions from sequence data.
    Kato Y; Mori T; Sato K; Maegawa S; Hosokawa H; Akutsu T
    Bioinformatics; 2017 Jan; 33(2):202-209. PubMed ID: 27663495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications.
    Incarnato D; Morandi E; Simon LM; Oliviero S
    Nucleic Acids Res; 2018 Sep; 46(16):e97. PubMed ID: 29893890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RBind: computational network method to predict RNA binding sites.
    Wang K; Jian Y; Wang H; Zeng C; Zhao Y
    Bioinformatics; 2018 Sep; 34(18):3131-3136. PubMed ID: 29718097
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DELPHI: accurate deep ensemble model for protein interaction sites prediction.
    Li Y; Golding GB; Ilie L
    Bioinformatics; 2021 May; 37(7):896-904. PubMed ID: 32840562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 4acCPred: Weakly supervised prediction of
    Zhou J; Wang X; Wei Z; Meng J; Huang D
    Mol Ther Nucleic Acids; 2022 Dec; 30():337-345. PubMed ID: 36381577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing.
    Wu Y; Shao W; Yan M; Wang Y; Xu P; Huang G; Li X; Gregory BD; Yang J; Wang H; Yu X
    Nat Commun; 2024 May; 15(1):4049. PubMed ID: 38744925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.