These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34252966)

  • 21. Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs.
    Wolff J; Backofen R; GrĂ¼ning B
    Bioinformatics; 2021 Nov; 37(22):4006-4013. PubMed ID: 34021764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HiCNN2: Enhancing the Resolution of Hi-C Data Using an Ensemble of Convolutional Neural Networks.
    Liu T; Wang Z
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31671634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of gene co-expression from chromatin contacts with graph attention network.
    Zhang K; Wang C; Sun L; Zheng J
    Bioinformatics; 2022 Sep; 38(19):4457-4465. PubMed ID: 35929807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ReHiC: Enhancing Hi-C data resolution via residual convolutional network.
    Cheng Z; Liu L; Lin G; Yi C; Chu X; Liang Y; Zhou W; Jin X
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150001. PubMed ID: 33685371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data.
    Wang Z; Zhang Y; Zang C
    Bioinformatics; 2021 Sep; 37(18):3075-3078. PubMed ID: 33720325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.
    Zhang Y; An L; Xu J; Zhang B; Zheng WJ; Hu M; Tang J; Yue F
    Nat Commun; 2018 Feb; 9(1):750. PubMed ID: 29467363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. miniMDS: 3D structural inference from high-resolution Hi-C data.
    Rieber L; Mahony S
    Bioinformatics; 2017 Jul; 33(14):i261-i266. PubMed ID: 28882003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extending partial haplotypes to full genome haplotypes using chromosome conformation capture data.
    Ben-Elazar S; Chor B; Yakhini Z
    Bioinformatics; 2016 Sep; 32(17):i559-i566. PubMed ID: 27587675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. preciseTAD: a transfer learning framework for 3D domain boundary prediction at base-pair resolution.
    Stilianoudakis SC; Marshall MA; Dozmorov MG
    Bioinformatics; 2022 Jan; 38(3):621-630. PubMed ID: 34741515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring chromatin conformation and gene co-expression through graph embedding.
    Varrone M; Nanni L; Ciriello G; Ceri S
    Bioinformatics; 2020 Dec; 36(Suppl_2):i700-i708. PubMed ID: 33381846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data.
    Xu Z; Zhang G; Wu C; Li Y; Hu M
    Bioinformatics; 2016 Sep; 32(17):2692-5. PubMed ID: 27153668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. essHi-C: essential component analysis of Hi-C matrices.
    Franzini S; Di Stefano M; Micheletti C
    Bioinformatics; 2021 Aug; 37(15):2088-2094. PubMed ID: 33523102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data.
    Jain D; Chu C; Alver BH; Lee S; Lee EA; Park PJ
    Bioinformatics; 2021 May; 37(8):1045-1051. PubMed ID: 33136153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving comparative analyses of Hi-C data via contrastive self-supervised learning.
    Li H; He X; Kurowski L; Zhang R; Zhao D; Zeng J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
    Agarwal A; Chen L
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selfish: discovery of differential chromatin interactions via a self-similarity measure.
    Ardakany AR; Ay F; Lonardi S
    Bioinformatics; 2019 Jul; 35(14):i145-i153. PubMed ID: 31510653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data.
    Kruse K; Hug CB; Vaquerizas JM
    Genome Biol; 2020 Dec; 21(1):303. PubMed ID: 33334380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments.
    Magnitov MD; Garaev AK; Tyakht AV; Ulianov SV; Razin SV
    BMC Bioinformatics; 2022 Apr; 23(1):116. PubMed ID: 35366792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chicdiff: a computational pipeline for detecting differential chromosomal interactions in Capture Hi-C data.
    Cairns J; Orchard WR; Malysheva V; Spivakov M
    Bioinformatics; 2019 Nov; 35(22):4764-4766. PubMed ID: 31197313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.