BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 3425335)

  • 1. A simple model describing the elastic properties of human umbilical arterial smooth muscle.
    Nádasy GL; Mohácsi E; Monos E; Lear JC; Kovách AG
    Acta Physiol Hung; 1987; 70(1):75-85. PubMed ID: 3425335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.
    Hudetz AG; Monos E
    Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of smooth muscle activation on the mechanical properties of pig carotid arteries.
    Hudetz AG; Márk G; Kovách AG; Monos E
    Acta Physiol Acad Sci Hung; 1980; 56(3):263-73. PubMed ID: 7257844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the sclerotic vessel wall really more rigid than the normal one?
    Márk G; Hudetz AG; Kerényi T; Monos E; Kovách AG
    Prog Biochem Pharmacol; 1977; 13():292-7. PubMed ID: 928430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PDE4 and PDE5 regulate cyclic nucleotides relaxing effects in human umbilical arteries.
    Santos-Silva AJ; Cairrão E; Morgado M; Alvarez E; Verde I
    Eur J Pharmacol; 2008 Mar; 582(1-3):102-9. PubMed ID: 18234184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The background of hysteretic properties of the human umbilical arterial wall. Smooth muscle contraction and hysteresis of the pressure-radius curves.
    Nádasy GL; Monos E; Mohácsi E; Kovách AG
    Acta Physiol Hung; 1988; 71(3):347-61. PubMed ID: 3138891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical properties of canine vertebral and internal carotid arteries.
    Bérczi V; Tóth P; Kovách AG; Monos E
    Acta Physiol Hung; 1990; 75(2):133-45. PubMed ID: 2339612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural model of the venous wall considering elastin anisotropy.
    Rezakhaniha R; Stergiopulos N
    J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acute ischaemia on active and passive large deformation mechanics of canine carotid arteries.
    Monos E; Kovách AG
    Acta Physiol Acad Sci Hung; 1979; 54(1):23-31. PubMed ID: 546047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of biomechanical and histological properties in dog carotid arteries injured by neointima or intimal thickening.
    Goto H; Mizuno R; Ono N; Sakaguchi M; Ohhashi T
    Jpn J Physiol; 2005 Dec; 55(6):355-64. PubMed ID: 16368015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Active and passive properties of carotid arteries].
    Kisliakov IuI
    Biofizika; 1975; 20(3):511-4. PubMed ID: 1138962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical behavior of vascular smooth muscle in cylindrical segments of arteries in vitro.
    Dobrin PB
    Ann Biomed Eng; 1984; 12(5):497-510. PubMed ID: 6534220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum].
    Maurice G; Wang X; Lehalle B; Stoltz JF
    J Mal Vasc; 1998 Oct; 23(4):282-8. PubMed ID: 9827409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A viscoelastic model of mechanically induced and spontaneous contractions of vascular smooth muscle.
    Hudetz AG; Monos E
    Acta Physiol Hung; 1985; 65(2):109-23. PubMed ID: 3984755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adventitia-dependent mechanical properties of brachiocephalic ovine arteries in in vivo and in vitro studies.
    Cabrera Fischer EI; Bia D; Camus JM; Zócalo Y; de Forteza E; Armentano RL
    Acta Physiol (Oxf); 2006 Oct; 188(2):103-11. PubMed ID: 16948797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive geometric and elastic properties of human cadaver common carotid artery segments after intraluminal enzyme digestion with the aid of a four-way double balloon catheter.
    Nadasy GL; Pusztai P; Kerényi T; Merkel V; Tolgyessy L; Jellinek H; Kovách AG; Monos E
    Cor Vasa; 1991; 33(1):58-67. PubMed ID: 1914468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evaluation of the elastic determinants of myocardial function in vivo.
    Kedem J; Guan X; Norgard S; Trivedi M; Drzewiecki G; Li JK
    Cardiovasc Eng; 2006 Sep; 6(3):103-10. PubMed ID: 16969622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic tissue and smooth muscle volume in elastic and muscular type arteries in the dog.
    Levický V; Dolezel S
    Physiol Bohemoslov; 1980; 29(4):351-360. PubMed ID: 6448422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for assessment of vascular reactivity in bone: in vitro studies on resistance arteries isolated from porcine cancellous bone.
    Lundgaard A; Aalkjaer C; Holm-Nielsen P; Mulvany MJ; Hansen ES
    J Orthop Res; 1996 Nov; 14(6):962-71. PubMed ID: 8982140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.