These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 3425335)
1. A simple model describing the elastic properties of human umbilical arterial smooth muscle. Nádasy GL; Mohácsi E; Monos E; Lear JC; Kovách AG Acta Physiol Hung; 1987; 70(1):75-85. PubMed ID: 3425335 [TBL] [Abstract][Full Text] [Related]
2. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions. Hudetz AG; Monos E Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373 [TBL] [Abstract][Full Text] [Related]
3. The effect of smooth muscle activation on the mechanical properties of pig carotid arteries. Hudetz AG; Márk G; Kovách AG; Monos E Acta Physiol Acad Sci Hung; 1980; 56(3):263-73. PubMed ID: 7257844 [TBL] [Abstract][Full Text] [Related]
4. Is the sclerotic vessel wall really more rigid than the normal one? Márk G; Hudetz AG; Kerényi T; Monos E; Kovách AG Prog Biochem Pharmacol; 1977; 13():292-7. PubMed ID: 928430 [TBL] [Abstract][Full Text] [Related]
5. PDE4 and PDE5 regulate cyclic nucleotides relaxing effects in human umbilical arteries. Santos-Silva AJ; Cairrão E; Morgado M; Alvarez E; Verde I Eur J Pharmacol; 2008 Mar; 582(1-3):102-9. PubMed ID: 18234184 [TBL] [Abstract][Full Text] [Related]
6. The background of hysteretic properties of the human umbilical arterial wall. Smooth muscle contraction and hysteresis of the pressure-radius curves. Nádasy GL; Monos E; Mohácsi E; Kovách AG Acta Physiol Hung; 1988; 71(3):347-61. PubMed ID: 3138891 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical properties of canine vertebral and internal carotid arteries. Bérczi V; Tóth P; Kovách AG; Monos E Acta Physiol Hung; 1990; 75(2):133-45. PubMed ID: 2339612 [TBL] [Abstract][Full Text] [Related]
8. A structural model of the venous wall considering elastin anisotropy. Rezakhaniha R; Stergiopulos N J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866 [TBL] [Abstract][Full Text] [Related]
9. Effect of acute ischaemia on active and passive large deformation mechanics of canine carotid arteries. Monos E; Kovách AG Acta Physiol Acad Sci Hung; 1979; 54(1):23-31. PubMed ID: 546047 [TBL] [Abstract][Full Text] [Related]
10. Comparison of biomechanical and histological properties in dog carotid arteries injured by neointima or intimal thickening. Goto H; Mizuno R; Ono N; Sakaguchi M; Ohhashi T Jpn J Physiol; 2005 Dec; 55(6):355-64. PubMed ID: 16368015 [TBL] [Abstract][Full Text] [Related]
11. [Active and passive properties of carotid arteries]. Kisliakov IuI Biofizika; 1975; 20(3):511-4. PubMed ID: 1138962 [TBL] [Abstract][Full Text] [Related]
12. Mechanical behavior of vascular smooth muscle in cylindrical segments of arteries in vitro. Dobrin PB Ann Biomed Eng; 1984; 12(5):497-510. PubMed ID: 6534220 [TBL] [Abstract][Full Text] [Related]
13. [Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum]. Maurice G; Wang X; Lehalle B; Stoltz JF J Mal Vasc; 1998 Oct; 23(4):282-8. PubMed ID: 9827409 [TBL] [Abstract][Full Text] [Related]
14. A viscoelastic model of mechanically induced and spontaneous contractions of vascular smooth muscle. Hudetz AG; Monos E Acta Physiol Hung; 1985; 65(2):109-23. PubMed ID: 3984755 [TBL] [Abstract][Full Text] [Related]
15. Adventitia-dependent mechanical properties of brachiocephalic ovine arteries in in vivo and in vitro studies. Cabrera Fischer EI; Bia D; Camus JM; Zócalo Y; de Forteza E; Armentano RL Acta Physiol (Oxf); 2006 Oct; 188(2):103-11. PubMed ID: 16948797 [TBL] [Abstract][Full Text] [Related]
16. Passive geometric and elastic properties of human cadaver common carotid artery segments after intraluminal enzyme digestion with the aid of a four-way double balloon catheter. Nadasy GL; Pusztai P; Kerényi T; Merkel V; Tolgyessy L; Jellinek H; Kovách AG; Monos E Cor Vasa; 1991; 33(1):58-67. PubMed ID: 1914468 [TBL] [Abstract][Full Text] [Related]
17. Experimental evaluation of the elastic determinants of myocardial function in vivo. Kedem J; Guan X; Norgard S; Trivedi M; Drzewiecki G; Li JK Cardiovasc Eng; 2006 Sep; 6(3):103-10. PubMed ID: 16969622 [TBL] [Abstract][Full Text] [Related]
18. Elastic tissue and smooth muscle volume in elastic and muscular type arteries in the dog. Levický V; Dolezel S Physiol Bohemoslov; 1980; 29(4):351-360. PubMed ID: 6448422 [TBL] [Abstract][Full Text] [Related]
19. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship]. Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563 [TBL] [Abstract][Full Text] [Related]
20. Method for assessment of vascular reactivity in bone: in vitro studies on resistance arteries isolated from porcine cancellous bone. Lundgaard A; Aalkjaer C; Holm-Nielsen P; Mulvany MJ; Hansen ES J Orthop Res; 1996 Nov; 14(6):962-71. PubMed ID: 8982140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]