These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 34253359)
1. Changes in rumen fermentation and bacterial community in lactating dairy cows with subacute rumen acidosis following rumen content transplantation. Mu YY; Qi WP; Zhang T; Zhang JY; Mei SJ; Mao SY J Dairy Sci; 2021 Oct; 104(10):10780-10795. PubMed ID: 34253359 [TBL] [Abstract][Full Text] [Related]
2. Changes in rumen epithelial morphology and transcriptome, rumen metabolome, and blood biochemical parameters in lactating dairy cows with subacute rumen acidosis following rumen content transplantation. Mu YY; Qi WP; Zhang T; Zhang JY; Li M; Mao SY J Dairy Sci; 2024 Oct; 107(10):7960-7972. PubMed ID: 38908691 [TBL] [Abstract][Full Text] [Related]
3. Gene function adjustment for carbohydrate metabolism and enrichment of rumen microbiota with antibiotic resistance genes during subacute rumen acidosis induced by a high-grain diet in lactating dairy cows. Mu YY; Qi WP; Zhang T; Zhang JY; Mao SY J Dairy Sci; 2021 Feb; 104(2):2087-2105. PubMed ID: 33358156 [TBL] [Abstract][Full Text] [Related]
4. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Gao X; Oba M J Dairy Sci; 2014 May; 97(5):3006-16. PubMed ID: 24612805 [TBL] [Abstract][Full Text] [Related]
5. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. Pan XH; Yang L; Xue FG; Xin HR; Jiang LS; Xiong BH; Beckers Y J Dairy Sci; 2016 Nov; 99(11):8790-8801. PubMed ID: 27568043 [TBL] [Abstract][Full Text] [Related]
6. Intramammary infusion of Escherichia coli lipopolysaccharide negatively affects feed intake, chewing, and clinical variables, but some effects are stronger in cows experiencing subacute rumen acidosis. Aditya S; Humer E; Pourazad P; Khiaosa-Ard R; Huber J; Zebeli Q J Dairy Sci; 2017 Feb; 100(2):1363-1377. PubMed ID: 27939552 [TBL] [Abstract][Full Text] [Related]
7. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. AlZahal O; Dionissopoulos L; Laarman AH; Walker N; McBride BW J Dairy Sci; 2014 Dec; 97(12):7751-63. PubMed ID: 25282426 [TBL] [Abstract][Full Text] [Related]
9. Elucidating the factors and consequences of the severity of rumen acidosis in first-lactation Holstein cows during transition and early lactation. Hartinger T; Castillo-Lopez E; Reisinger N; Zebeli Q J Anim Sci; 2024 Jan; 102():. PubMed ID: 38364366 [TBL] [Abstract][Full Text] [Related]
10. Multi-omics Analysis Revealed Coordinated Responses of Rumen Microbiome and Epithelium to High-Grain-Induced Subacute Rumen Acidosis in Lactating Dairy Cows. Mu Y; Qi W; Zhang T; Zhang J; Mao S mSystems; 2022 Feb; 7(1):e0149021. PubMed ID: 35076273 [TBL] [Abstract][Full Text] [Related]
11. Changes in Microbiota in Rumen Digesta and Feces Due to a Grain-Based Subacute Ruminal Acidosis (SARA) Challenge. Plaizier JC; Li S; Danscher AM; Derakshani H; Andersen PH; Khafipour E Microb Ecol; 2017 Aug; 74(2):485-495. PubMed ID: 28175972 [TBL] [Abstract][Full Text] [Related]
12. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells. Gao X; Oba M J Dairy Sci; 2016 Nov; 99(11):8733-8745. PubMed ID: 27638257 [TBL] [Abstract][Full Text] [Related]
14. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. Wetzels SU; Mann E; Pourazad P; Qumar M; Pinior B; Metzler-Zebeli BU; Wagner M; Schmitz-Esser S; Zebeli Q J Dairy Sci; 2017 Mar; 100(3):1829-1844. PubMed ID: 28041738 [TBL] [Abstract][Full Text] [Related]
15. Effect of an intramammary lipopolysaccharide challenge on the hindgut microbial composition and fermentation of dairy cattle experiencing intermittent subacute ruminal acidosis. Petri RM; Aditya S; Humer E; Zebeli Q J Dairy Sci; 2021 May; 104(5):5417-5431. PubMed ID: 33663865 [TBL] [Abstract][Full Text] [Related]
16. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. Mao S; Zhang R; Wang D; Zhu W BMC Vet Res; 2012 Dec; 8():237. PubMed ID: 23217205 [TBL] [Abstract][Full Text] [Related]
17. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls. Nagata R; Kim YH; Ohkubo A; Kushibiki S; Ichijo T; Sato S J Dairy Sci; 2018 May; 101(5):4424-4436. PubMed ID: 29477528 [TBL] [Abstract][Full Text] [Related]
18. Effects of corn silage particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed preference, and milk fat profile of dairy cattle. Kmicikewycz AD; Harvatine KJ; Heinrichs AJ J Dairy Sci; 2015 Jul; 98(7):4850-68. PubMed ID: 25958273 [TBL] [Abstract][Full Text] [Related]
19. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation. Khafipour E; Krause DO; Plaizier JC J Dairy Sci; 2009 Apr; 92(4):1712-24. PubMed ID: 19307653 [TBL] [Abstract][Full Text] [Related]
20. Short communication: Noninvasive indicators to identify lactating dairy cows with a greater risk of subacute rumen acidosis. Gao X; Oba M J Dairy Sci; 2015 Aug; 98(8):5735-9. PubMed ID: 26026756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]